
Studying the Applicability of the Scratchpad Memory Management Unit

Jack Whitham and Neil Audsley
Real-Time Systems Group

Department of Computer Science
University of York, York, YO10 5DD, UK

jack@cs.york.ac.uk

Abstract
A combination of a scratchpad and scratchpad memory

management unit (SMMU) has been proposed as a way to
implement fast and time-predictable memory access oper-
ations in programs that use dynamic data structures. A
memory access operation is time-predictable if its execu-
tion time is known or bounded – this is important within a
hard real-time task so that the worst-case execution time
(WCET) can be determined. However, the requirement for
time-predictability does not remove the conventional re-
quirement for efficiency: operations must be serviced as
quickly as possible under worst-case conditions.

This paper studies the capabilities of the SMMU when
applied to a number of benchmark programs. A new allo-
cation algorithm is proposed to dynamically manage the
scratchpad space. In many cases, the SMMU vastly re-
duces the number of accesses to dynamic data structures
stored in external memory along the worst-case execution
path (WCEP). Across all the benchmarks, an average of
47% of accesses are rerouted to scratchpad, with nearly
100% for some programs. In previous scratchpad-based
work, time-predictability could only be assured for these
operations using external memory. The paper also exam-
ines situations in which the SMMU does not perform so
well, and discusses how these could be addressed.

1 Introduction
Time-predictable execution of memory access opera-

tions (load and store) is an important feature for execu-
tion of hard real-time tasks [4]. The worst case execu-
tion time (WCET) of each task partly depends on the la-
tency of its memory accesses [18]. The use of a scratch-
pad has been proposed as a way to implement fast time-
predictable memory accesses in embedded hard real-time
systems [8, 16, 22, 23].

The scratchpad memory management unit (SMMU) ex-
tends scratchpad capabilities [27] to allow programs to
store the working set of dynamic data structures in fast on-
chip memory without the problem of conflict misses cre-
ated by locked caches [11] nor the pointer aliasing and
invalidation problems created by some dynamic scratch-
pad management techniques [26]. Unlike previous ap-
proaches [8, 24], the SMMU provides a program with
a single logical address space. When the working set

changes, data may be relocated between scratchpad and
external memory; logical addresses are unchanged.

This paper characterizes the WCET improvement when
the SMMU is used in addition to previous time-predictable
scratchpad management techniques within a series of pro-
grams. Previous work is suitable for static data structures,
i.e. global and local variables [8,23], but not dynamic data
structures. Accesses to these must use external memory,
which is relatively slow. A substantial WCET reduction is
possible when most accesses are routed to scratchpad.

The approach taken is as follows. First, an algorithm is
described for reducing the WCET of a program by adding
the SMMU operations “OPEN” and “CLOSE” at appro-
priate points. These copy data between external mem-
ory and scratchpad, and update a remapping table in the
SMMU so that the copied objects retain the same logical
address and program semantics are unchanged [27].

Secondly, the effects of the algorithm on the WCET of
various benchmark programs is examined. This provides
real examples of the SMMU’s strengths and weaknesses,
and shows the reduction in WCET that can be expected
through the use of the SMMU. The algorithm is not the
subject of the evaluation; it is merely a part of the mech-
anism by which the SMMU is evaluated. In particular,
suboptimal decisions made by the algorithm will simply
lead to poorer WCET reductions.

The structure of this paper is as follows. Section 2 has
background detail on related work and the SMMU. Sec-
tion 3 describes an allocation algorithm and section 4 de-
scribes the experimental environment used for evaluation
of the SMMU. Section 5 gives the results of applying the
algorithm to the benchmarks, and section 6 develops the
investigation further with a discussion of how to improve
the WCET in the cases where it was not greatly reduced.
Section 7 concludes.

2 Background
Within a real-time system, it is often necessary to esti-

mate the WCET of a real-time task in order to be certain
that the task will meet its deadline [4]. Estimates must be
safe (greater than the true WCET), but also tight (as close
as possible to the true WCET) [18]. Time-predictable
computer architectures aim to enable WCET estimation
by specifying timing characteristics at the architectural



level [2] and/or limiting the range of possible timing be-
haviors [21]. Time-predictable architecture research has
often focused on the CPU [14,17] or the instruction mem-
ory subsystem [16]. These issues are orthogonal to the
work in this paper, which focuses on data: specifically
memory access instructions.

External memory accesses have a high latency (exe-
cution time) in relation to the latency of other instruc-
tions [21], perhaps of the order of 100 CPU clock cy-
cles [27]. This would limit the speed of program execution
if it applied to every memory access.

The conventional solution is a data cache [11]. Data
caches store recently-used data in fast on-chip mem-
ory, approximating the working set. They are not time-
predictable because the latency of every memory access
is dependent on the addresses used by earlier accesses
(known as the reference string [7]). Obtaining tight but
safe WCET estimates is a major challenge that has previ-
ously been addressed as follows:

1. Ensuring that only one reference string is possible
for the program – accesses with non-predictable addresses
bypass the cache [25]. This limits the cache benefit to
static data structures, allows the exact number of cache
misses to be calculated for each path through the code.

2. Allocating memory to eliminate conflict misses be-
tween objects that might be accessed simultaneously [13].
This technique uses shape analysis to determine which
data structures may be used simultaneously [20], and uses
this data to ensure that they will not conflict in cache. This
provides a global bound on the number of cache misses.

3. Locally bounding the number of cache misses within
loops based on the relationships between the addresses
used in each iteration [19].

Bounding the number of cache misses is useful but
does not provide enough information for WCET analy-
sis of complex CPUs because of the interaction between
the CPU pipeline and the cache [14]. Analysis is use-
ful for systems that must use caches, but it is also valid
to ask whether caches are actually a good technology for
time-predictable systems as their behavior must be worked
around to achieve time-predictable operation.

Scratchpads are a possible cache alternative. It is a low
latency memory that is tightly coupled to the CPU [22].
Access times are independent of the reference string, sim-
plifying WCET analysis and making scratchpads ideal for
use in hard real-time systems [23]. Scratchpad alloca-
tion may be static, i.e. fixed throughout program execu-
tion [23], but dynamic scratchpad management techniques
are more effective in general because they may keep the
working set in scratchpad. This is done by copying ob-
jects at predetermined points in the program in response
to execution [8, 24]. Dynamic scratchpad management re-
quires a dynamic scratchpad allocation algorithm to decide
where copy operations should be carried out.

A time-predictable dynamic scratchpad allocation al-
gorithm has been described by Deverge and Puaut [8]. A
program is divided into regions, each with a different set
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Figure 1: A computer architecture with SMMU and scratchpad.

of objects loaded into scratchpad. It supports only static
data structures, i.e. global and local variables. This restric-
tion ensures that every program instruction can be trivially
linked to the variables it might use. This is important (1)
so that no attempt is made to access a variable in scratch-
pad while it is in external memory or vice versa, and (2)
so that the access time can be accurately computed.

Currently, the only dynamic scratchpad allocation algo-
rithm that supports dynamic data structures is described by
Udayakumaran, Dominguez and Barua [24]. It uses a form
of shape analysis [20] to determine which instructions can
access which data structures, and thus ensures that ac-
cesses to any particular object type can only occur during
the regions where that object type is loaded into scratch-
pad. However, the technique is not time-predictable, be-
cause objects are spilled into external memory when in-
sufficient scratchpad space is available.

In general, supporting dynamic data structures in
scratchpads creates two problems. The first is pointer
aliasing [1], where two or more pointers reference a single
memory location: this becomes a problem when the object
at that location is relocated to scratchpad, but not all of the
pointers are updated to reflect the change. The remaining
pointers reference a stale copy of the data. The second is
pointer invalidation [24], where a pointer becomes invalid
due to the relocation of an object (e.g. from external mem-
ory to scratchpad). The pointer is left “dangling”, referring
to uninitialized memory. In [24], these problems are ad-
dressed by keeping each object at a fixed physical memory
location, so that pointers are never invalidated and aliases
always reference the same object. This limits the useful-
ness of scratchpad space and impacts time-predictability
whenever objects may be spilled into external memory.

2.1 The SMMU
The scratchpad memory management unit

(SMMU) [26] is based on a simple idea: use a scratchpad
to store the working set, but maintain a consistent logical
address space as objects are moved between scratchpad
and external memory. The physical address of an object
may change, but the logical address used by the CPU and
program is constant.

In this way, the SMMU combines the address trans-
parency of a cache with the time-predictability property of
a scratchpad. Each access to memory is independent of all
others, there is no dependence on the reference string, and
consequently the memory subsystem is extremely easy to
model accurately for WCET analysis. Additionally, there
is no need to perform shape analysis on the programs used,
because there is no possibility of conflict between the ob-



jects mapped into scratchpad.
Figure 1 shows a simple computer architecture mak-

ing use of an SMMU, scratchpad and external memory.
The SMMU introduces two new operations, OPEN and
CLOSE. OPEN maps an area of the logical address space
to the scratchpad memory. The contents of the area are
copied from external memory to scratchpad, and any fu-
ture memory accesses that use the area are redirected to
the scratchpad. CLOSE reverses the process. The hard-
ware mechanism that implements OPEN and CLOSE is
designed to operate correctly even if the memory areas be-
ing OPENed and CLOSEd overlap [27].

2.2 Formal SMMU Model
Let an abstract computer system include an external

memory, a scratchpad and an SMMU (Figure 1). The two
memories exist at different physical addresses (common
practice for scratchpads [22]). Let l be a logical address,
p be a physical address, and f : l 7→ p be a function that
maps a logical address onto a physical address. The initial
mapping f is p = f0(l) = l.

OPEN takes three parameters: bi, the lowest logical ad-
dress of the area to be mapped, si, the size of the area,
and ti, the physical address of the destination, which is
in scratchpad memory. During OPEN, the external mem-
ory range [bi, bi + si] is copied to the scratchpad area
[ti, ti + si]. After OPEN(bi, si, ti), the remapping f is:

p = fi(l) =
{

l + ti − bi if bi ≤ l < bi + si

l otherwise (1)

This reroutes all accesses to memory range [bi, bi + si] to
the copy in the scratchpad; this is invisible to the CPU,
because all of the data in that range retains the same log-
ical address. The CLOSE operation reverses the OPEN
process by copying scratchpad area [ti, ti + si] to exter-
nal memory and removing the remapping for i from f .
CLOSE accepts a single parameter (i).

While i is OPEN, the copy of [bi, bi + si] in scratchpad
is considered to be more recent than the copy in external
memory. More than one area of memory can be OPEN at
the same time, up to a limit defined by the SMMU imple-
mentation. These areas can overlap in the logical address
space. If this happens (e.g. due to pointer aliasing [1])
then more than one copy of the overlapping area exists in
scratchpad and a priority ordering defines the copy that is
considered most recent. This ordering is encoded in the
expanded definition of f :

f(l) =


l + ti − bi if ∃i, (bi ≤ l < bi + si) ∧

∀j, (j ≤ i
∨ ¬[bj ≤ l < bj + sj ])

l otherwise
(2)

f requires 2n comparisons in the worst case, where n is
the maximum number of memory areas that can be OPEN
simultaneously. However, these comparisons do not re-
quire O(n) clock cycles as they can be performed in par-

allel by dedicated hardware. Adding an SMMU to a sys-
tem does increase the delay for memory access, potentially
reducing the maximum frequency of the CPU if memory
accesses are not pipelined, but by much less than O(n).
The critical path is through one comparator and one mul-
tiplexer, not n [27].

2.3 When should the SMMU be used?
OPEN enables time-predictable low-latency access to

any memory area [bi, bi+si], which is copied to [ti, ti+si]
in scratchpad. There is a copying cost C(si) for si words
of memory. Using a bus architecture that supports burst
transactions [16], C(si) < siC(1) for si > 1; i.e. less
time is required to copy si words in one burst than si

words in si separate transactions. The definition of C(si)
is hardware-dependent, but typically includes a constant
component L (the time taken to set up a burst transaction),
giving an equation similar to:

C(n) = L + n (3)

Values for L may vary from around 10 CPU clock cy-
cles [16] to over 70 for some embedded systems [27]. n
may be multiplied by some factor to reflect the bus width,
such as 4n for a 128-bit bus transferring 32-bit words; this
factor is omitted for simplicity.

C is used to determine if data area i should be OPENed.
Let N(i) be the worst-case number of accesses to memory
area [bi, bi + si] within a subprogram that defines i once.
B(i) is the time saved by OPENing i:

B(i) = N(i)C(1)− 2C(si)−N(i) (4)

Where N(i)C(1) is the total execution time related to i
if it is not OPENed, 2C(si) is the cost of OPENing and
CLOSEing i; and N(i) is the worst-case cost of accessing
i if it is in scratchpad (the latency of scratchpad accesses
is 1 [27]). Clearly, if B(i) > 0, then OPENing is worth-
while: the execution time is reduced.

2.4 How is the SMMU used?
The two examples given in this section illustrate how

OPEN and CLOSE can be used within a program.
Example 1, vector multiplication. Suppose that some

code multiplies a vector (V) by a constant (K):

FOR Index := 0 TO 99 DO
V[ Index ] := K ∗ V[ Index ] ;

END;

V is represented by an array stored in logical address
range [bV, bV + sV]. V is accessed 200 times (100 loads,
100 stores), so N(V) = 200. The size sV = 100.

There could be a reduction in WCET if V was copied
to scratchpad. OPEN could be used to (1) copy logical
address range [bV, bV + sV] to scratchpad physical address
range [tV, tV + sV], and (2) remap any access l ∈ [bV, bV +
sV] to [tV, tV +sV]. This would reduce the latency of every
access to V. The new code would appear as:

V r e f := OPEN(V, 100 , 0 ) ;
FOR Index := 0 TO 99 DO



V[ Index ] := K ∗ V[ Index ] ;
END;
CLOSE( V r e f ) ;

Equation 4 defines B(V), the WCET reduction from
OPENing V. Substituting the definition of C (equation 3)
into equation 4:

B(V) = N(V)(L + 1)− 2(L + sV)−N(V)
B(V) = (N(V)− 2)L− 2sV

B(V) = 198L− 200 (5)

In this form, it is clear that V should be OPENed if L > 1;
the WCET reduction will be proportional to L. Observe
that this might change if sV and N(V) had different values.

Example 2, linked list traversal. Xt is a list element:

TYPE Xt = RECORD
Data : INTEGER ;
Next : POINTER TO Xt ;

END ;

Let X be a list of Xt. Some code multiplies the Data
member of each element of X by a constant K:

J := X ;
WHILE J <> NIL DO

J . Data := K ∗ J . Data ;
J := J . Next ;

END;

It is not possible to OPEN all of list X because X does
not occupy a contiguous range of logical addresses. How-
ever, in any dynamic data structure, each element J occu-
pies a contiguous range [bJ, bJ + sJ], so it is possible to
OPEN each element in turn:

J := X ;
WHILE J <> NIL DO

J r e f := OPEN( J , SIZEOF ( Xt ) , 0 ) ;
J . Data := K ∗ J . Data ;
J := J . Next ;
CLOSE( J r e f ) ;

END;

This is not as effective as opening the entire list. Sup-
pose that sJ = SIZEOF(Xt) = 2 words. N(J) = 3, since
Next is loaded and Data is loaded and stored. Adapting
equation 5, B(J) is defined as:

B(J) = (N(J)− 2)L− 2sJ = L− 4 (6)

In this form, J should be OPENed if L > 4. OPEN and
CLOSE take approximately the same time as each access:
the execution time is only reduced when N(J) > 2.

Currently, the SMMU provides no mechanism for han-
dling read-only, write-only and temporary objects effi-
ciently, because of the possibility that the object might
overlap a read-write object due to aliasing. This will be
considered in future work.

3 Algorithm for SMMU Evaluation
The SMMU allows a program to store dynamic data

structures in scratchpad (section 2.1), but this new capa-
bility cannot be applied to all data structures in all pro-
grams (section 2.3). This motivates a study of how often
the SMMU is useful in real programs.

Such a study requires an algorithm to automatically add
OPEN and CLOSE operations to a program. This will en-
able a large number of programs to be examined, and thus
provide a more realistic picture of the effectiveness of the
SMMU. It is not important that the algorithm be optimal;
it is merely a means to the end of studying the SMMU.

This section describes the requirements for such an al-
gorithm (section 3.1), its parameters (section 3.2) and pre-
vious work (section 3.3). Lastly, it specifies a suitable al-
gorithm (section 3.4).

3.1 Problem Description
The “SMMU allocation algorithm” must decide where

OPEN and CLOSE operations should be placed, and what
their parameters should be.

The problem to be solved is a form of WCET-directed
scratchpad allocation algorithm, similar to those given
in [8, 16]. The scratchpad is dynamically managed; al-
gorithms that consider only a static allocation are not suit-
able [23] because they could never support dynamic data
structures. There is an additional constraint, as the num-
ber of objects mapped into scratchpad is limited by the size
of the comparator network implementing equation 2, and
there is a new difficulty, as the definition, liveness and us-
age of pointers must be considered on a local basis (i.e. at
the function level, not shape analysis).

All such algorithms rely on WCET analysis to deter-
mine which data should be stored in scratchpad. WCET
may be estimated using a variety of techniques [4,18]; the
chosen method is not important. Estimating the WCET
reveals the worst-case execution path (WCEP), the path
through the code that maximizes the execution time. This
indicates which parts of the code are most costly.

3.2 Defining the Parameters
Let a program be represented by a control-flow graph

(CFG) G = (V,E). E is the set of all basic blocks; V is
the set of vertexes linking them together.

Let P be the set of all pointers referencing dynamic
data structures that are used within the program. Each
p ∈ P is a temporary reference to an object in memory
occupying logical address range [bp, bp + sp]. It is pos-
sible to distinguish between a pointer p ∈ P referencing
dynamic data and any other sort of pointer by examining
the instruction that defines p. p only references a dynamic
data structure if it is created by a load operation, or by
arithmetic on the result of a load operation.

Define-use analysis [1] may be used to determine which
basic block e ∈ E defines a pointer p ∈ P , and to de-
termine which basic blocks may subsequently use p. Let
U(e) be the multiset of p ∈ P used by basic block e.

Liveness analysis [1] is also useful. A pointer p ∈ P
is live at basic block e if e is on a path between the def-
inition of p and some usage of p not following any other
definition. Let I(e) be the subset of P that is live during e.

All of the above information can be captured from a
program binary and source code. Two further types of in-



formation are needed from elsewhere. Firstly, the max-
imum number of iterations of each loop in the program
must be bounded for WCET analysis [18]. The bounds
are known as absolute and relative capacity constraints.
They bound the maximum execution frequencies of basic
blocks. In some cases, loop bounds can be determined au-
tomatically by analysis of the code [9], but in general they
must be specified by the programmer.

Secondly, the maximum size of the data accessed via
each pointer p ∈ P must also be known. The maximum
size for p is sp. The problem of determining each sp is
similar to the issue of loop bounds. sp is sometimes im-
plicitly encoded by the programming language, for exam-
ple if p refers to a data structure of fixed size, such as a
C++ class, C struct or Ada record or array. In
other circumstances, sp may be computed automatically
from the loop bounds, e.g. when a loop iterates through all
elements of p. However, in the most general case, it must
be specified by the programmer.

3.3 Previous Work
Scratchpad allocation algorithms are typically greedy

and directed by WCET analysis [8, 16, 23]. If dynamic
scratchpad management is to be used, the program is parti-
tioned into non-overlapping regions, typically containing a
single loop or function [16]. Each region has its own mem-
ory map. When program execution moves from one region
to another, data may be moved between external memory
and scratchpad. Creating region boundaries around loops
is a good idea because the contents of a loop are likely to
be executed more often than the surrounding code. There-
fore, it may be worth changing the scratchpad contents to
suit the code within the loop. Each point in the CFG re-
quires a fixed set of objects to be present scratchpad: this
simplifies the algorithms that are used at the cost of a lack
of sensitivity to the execution context of each basic block.

Having determined such regions, scratchpad allocation
algorithms operate in two phases: (1) WCET analysis
is performed to find the most frequently executed code/-
most commonly accessed variables, then (2) the chosen
code/variables are moved into scratchpad. This process
repeats until scratchpad space or possible candidates are
exhausted. Sometimes the WCET is estimated after every
decision [23]; other algorithms carry out a fixed number
of steps before re-evaluating it [16].

These ideas are sound but not entirely suitable for the
“SMMU allocation algorithm” because it operates on tem-
porary references to objects. Each p does not exist un-
til defined by the code. Consequently, regions need to be
smaller. It is good to form regions around loops [16], but
for the SMMU, it is also good to break these regions down
further by creating region boundaries whenever the live-
ness set I(e) changes. This is because any change in the
liveness set may be caused by the creation of a new pointer
which should be OPENed, or the destruction of an old
pointer which can be CLOSEd. The allocation algorithm
will also be limited by the implementation of equation 2.

3.4 SMMU Allocation Algorithm
Inputs: (1) a CFG G = (V,E), (2) the set of pointers

P ; (3) the liveness set I(e) ⊂ P ; (4) the usage multi-
set U(e); (5) relative and absolute capacity constraints for
WCET estimation; (6) size information ∀p ∈ P, sp; (7)
the scratchpad size Ss; and (8) the comparator network
size limit Sl.

Outputs: (1) Non-overlapping regions R ⊂ E ∪ V ;
(2) the set of pointers that are OPEN during each region
O(R) ∈ P ; and (3) a scratchpad location tp,R for each
pointer and each region.

Algorithm Step A. Partitioning: The CFG is partitioned
at every loop preheader [16], and then at every change in
the liveness set. The liveness set is deemed to change at
every vertex v1 where ∃v0,∃v2, I((v0, v1)) 6= I((v1, v2)).

Step B. Set ∀R,O(R) := ∅, ∀R,∀p, tp,R := undefined.
Step C. WCET analysis. Let c(e) be the execution cost

of basic block e according to a conventional CPU model,
which should assume that all memory accesses are ser-
viced as quickly as possible. Let c′(e) be the execution
cost of e taking external memory accesses into account.
c′(e) = x(e) + y(e) + c(e), where x(e) is the execution
cost of instructions that use external memory:

x(e) = C(1)|p ∈ U(e) ∧ e ∈ R ∧ p /∈ O(R)| (7)

and y(e) is the execution cost of OPEN and CLOSE:

((v1, v2) = e) ∧ (v1 ∈ R1) ∧ (v2 ∈ R2)⇒
y(e) =

∑
p∈O(R1) 6= p∈O(R2)

C(sp) (8)

Then, c′(e) is substituted for c(e) as the cost of basic block
e during WCET analysis.

Step D. Determine the operation that makes the great-
est contribution to the WCET. This will be one of the terms
in equation 7 or 8 multiplied by f(e), the worst-case fre-
quency of execution for basic block e.

Step E. Attempt to reduce the cost of this operation. If it
is a term from equation 7, the cost is reduced by opening p
within region R. An entry in the comparator network must
be available: |O(R)| < Sl, and tp,R must be found such
that there is no conflict with any other scratchpad space:

∀p′ ∈ O(R),¬(tp′,R ≤ tp,R < tp′,R + sp′)
∧¬(tp′,R ≤ tp,R + sp < tp′,R + sp′)

∧(0 ≤ tp,R ∧ tp,R + sp ≤ Ss) (9)

If it is a term from equation 8, attempt to increase the num-
ber of regions in which p is OPEN. p must retain the same
location tp,R in any adjacent region R′; therefore, equation
9 applies. This can reduce the cost of OPEN and CLOSE
operations by making them less frequent.

Step F. Re-evaluate the WCET as in step C. If the
WCET has decreased relative to the best known WCET,
then firmly accept all changes made to date, and go to step
D. Otherwise, tentatively accept the changes made by step
E. If the number of changes that have been tentatively ac-
cepted in this way exceeds a preset threshold, then back-



tracking takes place. Tentative changes are undone.

4 Experimental Environment
This section describes the benchmark programs and ex-

perimental environment used to study the SMMU. It is di-
vided into three parts. The first justifies the selection of
benchmark software (section 4.1). Section 4.2 discusses
the problem of deriving loop bounds and object size data.
Lastly, section 4.3 describes the results of the initial anal-
ysis of the benchmark programs.

4.1 Benchmark Selection
Most WCET-related research makes use of a set of

benchmarks from the Mälardalen Real-time Technology
Center (MRTC) [15], which feature the loop bound anno-
tations required for WCET analysis [5]. However, these
are not suitable for this paper because they do not use dy-
namic data structures.

A new set of benchmarks is needed to exercise the ca-
pabilities of the SMMU. These do not have to be hard
real-time if they can provide information about the in-
teraction between the SMMU and real code. To eval-
uate the SMMU, the benchmark programs need to be
representative of typical programs, not specifically hard
real-time programs. Therefore, benchmark suites such as
Mibench [10] and SPEC CPU2000 [12] are suitable (Fig-
ure 2). The C programs included in these suites are in-
tended to be representative of typical computational loads
(SPEC) and typical embedded systems code (Mibench).
They make heavy use of dynamic data structures: exactly
the type of operations needed to study the SMMU.

The SPEC and Mibench programs that are not included
in Figure 2 are those that do not use dynamic data struc-
tures at all (e.g. bitcount, sha) and those written in For-
tran. This is because the experimental environment cur-
rently only supports C and C++ code.

4.2 Deriving Loop Bounds and Object Size Data
The disadvantage of CPU2000 and Mibench is the lack

of loop or object size annotations, which prevents WCET
analysis. It is not feasible to manually add such annota-
tions to all CPU2000 and Mibench programs due to their
size. One could assume that the input data is fixed, sim-
plifying the programs to being single-path [17], but this is
not realistic – single-path code is rare and this simplifying
assumption could distort the results.

In this paper, we eliminate the need for annotations by
obtaining the loop bounds and object sizes by running the
programs with test data. Then, this information is applied
during conventional WCET analysis using the algorithm
described in [18]. This is still not entirely realistic, since it
is assumed that the test data produces the maximum num-
ber of loop iterations and uses the largest possible objects.
However, it is far better than the single-path assumption,
because (1) conditional statements are not constrained at
all, (2) loops may exit early, and (3) when an instruction

Benchmark Description
adpcmM, gsmM, lameM Audio compression
ammpF Molecular modeling
artF Image recognition
basicmathM Math functions
bfM, rijndaelM Encryption algorithm
bzip2I, gzipI Lossless data compression
cjpegM, djpegM Image codec
craftyI Chess-playing program
crc32M Checksum
dijkstraM Shortest path algorithm
equakeF Earthquake simulator
fftM Fast Fourier transform
gapI Group algorithms
ispellI Spell checker
mcfI Combinatorial optimization
mesaF Software OpenGL renderer
patriciaM Routing table manipulation
qsortM Quicksort algorithm
rsynthM Text to speech synthesis
stringsearchM Finds substrings in a list
susanM Image edge detection
vprI FPGA placement algorithm

Figure 2: Benchmark programs are taken from SPEC [12]
CINT2000 (I), CFP2000 (F) and Mibench [10] (M).

may use two or more different pointers, all possibilities are
considered by WCET analysis.

4.3 Initial Investigation
The benchmarks were compiled for the Alpha instruc-

tion set [6]. Then, each was executed using the M5 sim-
ulator [3] for 100 million instructions or until completion
(whichever came first). Analysis of the execution trace re-
vealed the loop bound and object size information required
for WCET analysis. It also provided the liveness and usage
information for the pointers used within the program (I(e)
and U(e)). The WCET estimation model assumed an ex-
ecution time cost of 1 clock cycle per instruction, except
for instructions accessing external memory, which are ac-
counted for as in equations 7 and 8. Accesses to static data
structures (global and local variables) always take 1 clock
cycle. Accesses to dynamic data structures take C(1) cy-
cles unless the data is in scratchpad. In that case, they also
take 1 clock cycle. For the definition of C, L = 50 clock
cycles. This access latency is close to that found on real
embedded systems [27].

Figure 3 shows some of the information gathered about
each benchmark after WCET analysis. The columns la-
beled “Proportion of WCEP” give statistics about the in-
structions that would be found on the WCEP, if it were
to be executed. R is the proportion of instructions that
only access registers, S is the proportion that only access
static data structures, and D is the proportion that access
dynamic data structures. This final group of instructions
is the one affected by the SMMU allocation algorithm.
The data shows that (on average) 70% of the instructions



Benchmark Proportion of WCEP WCET
R S D Code DE

adpcm 92% 3.1% 4.7% 47 100
ammp 72% 20% 8.1% 220 800
art 76% 7.8% 16% 140 990
basicmath 65% 34% 0.47% 230 49
bf 64% 23% 14% 610 3700
bzip2 60% 19% 21% 120 1200
cjpeg 65% 25% 9.4% 45 200
crafty 62% 24% 14% 580 3700
crc32 64% 22% 13% 620 3600
dijkstra 63% 27% 9.4% 67 280
djpeg 79% 5.3% 16% 7.8 60
fft 74% 25% 0.32% 200 30
gap 61% 20% 19% 140 1200
gsm 68% 23% 8.5% 45 180
gzip 68% 12% 20% 130 1200
ispell 70% 22% 7.2% 18 56
lame 78% 20% 1.4% 220 150
mcf 67% 29% 4.6% 120 260
mesa 73% 25% 2.3% 140 150
patricia 74% 24% 1.6% 140 96
qsort 62% 19% 20% 55 490
rijndael 69% 25% 6.7% 120 380
rsynth 65% 33% 2.2% 110 110
stringsearch 75% 24% 1.3% 0.34 0.20
susan 83% 0.57% 16% 32 250
twolf 65% 26% 9.4% 140 570
vpr 77% 18% 4.8% 130 290

Figure 3: Information about each benchmark program. Each
value is rounded to 2 significant digits. Throughout this paper,
execution counts, frequencies and proportions are determined
along the WCEP, that is, by taking the worst-case frequency of
execution for each basic block into account.

in a benchmark program access only registers. The re-
maining 30% access either static or dynamic data struc-
tures. However, the proportion of each type of access
varies widely: from programs that almost exclusively use
dynamic data structures (susan) to those that almost exclu-
sively use static data structures (fft). Clearly, the bench-
marks represent many different ways of using memory.

The columns labeled “WCET” give the estimated
WCET of each program when dynamic memory accesses
are routed to external memory. The WCET estimate is
split into two parts: the WCET of the program (Code) and
the WCET of accesses to dynamic data structures in exter-
nal memory (DE). (The WCET estimate for the program
is the sum of both of these values.)

DE is greater than Code unless D is very much smaller
than S and R. This demonstrates that the cost of dynamic
data accesses can be highly significant even if only a small
proportion of the instructions on the WCEP actually ac-
cess dynamic data. This is because the cost of external
memory accesses is so much higher than accesses to on-
chip memory. Therefore, the SMMU may be worthwhile
even for programs that mostly use static data structures.

Benchmark Prop. Max Max
E E

DEDS OPEN size
adpcm 100% 2 2512 1.00 0.01
ammp 84% 2 6696 150 0.18
art 22% 1 176 780 0.79
basicmath 60% 1 40 30 0.61
bf 97% 2 1247 94 0.03
bzip2 19% 3 300 1000 0.90
cjpeg 47% 3 16176 120 0.61
crafty 12% 1 224 3300 0.89
crc32 97% 1 616 110 0.03
dijkstra 10% 2 2036 260 0.91
djpeg 80% 8 4824 16 0.26
fft 5.4% 1 16 30 0.98
gap 36% 2 672 1000 0.84
gsm 96% 2 1360 18 0.10
gzip 0.78% 1 72 1200 0.99
ispell 7.7% 1 24 55 0.99
lame 9.7% 1 64 150 0.96
mcf 55% 2 1232 170 0.66
mesa 0.03% 2 408 150 1.00
patricia 61% 2 3080 75 0.79
qsort 14% 2 1863 450 0.92
rijndael 96% 4 2304 140 0.36
rsynth 62% 2 880 43 0.38
stringsearch 97% 1 55 0.08 0.39
susan 33% 1 608 160 0.67
twolf 2.1% 1 616 560 0.98
vpr 55% 3 222 170 0.59

Figure 4: Initial results of the SMMU allocation algorithm.

5 Applying the Algorithm
To apply the “SMMU allocation algorithm” to the

benchmarks, it is necessary to make three further assump-
tions: (1) the size of the scratchpad memory, (2) the max-
imum number of OPEN objects, and (3) the tolerance
threshold of the algorithm (section 3.4, step F).

The comparator network that implements equation 2
limits the number of objects to a small number: in hard-
ware, a size of 8 or 16 entries appears realistic [27]. Typi-
cal scratchpad sizes range between 1kb and 64kb [16].

The results of an initial execution of the algorithm are
shown in Figure 4. A scratchpad size Ss = 16kb was used,
along with a maximum of Sl = 16 OPEN objects. A toler-
ance threshold of 20 was chosen to produce higher quality
results at the expense of increased computation time.

Figure 4 shows (from left to right) the proportion of
dynamic data structure accesses on the WCEP that were
routed to scratchpad (DS), the maximum number of ob-
jects that were OPEN simultaneously, and the combined
size of those objects in scratchpad (given in bytes).

The WCET of accesses to external memory is given as
E: this is the the combined execution cost of the accesses
that could not be routed to scratchpad plus the execution
cost of the OPEN and CLOSE operations (equation 3). Fi-
nally, the ratio E

DE is shown. This shows how the WCET
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Figure 5: Ratio E
DE using different scratchpad sizes.

of the instructions that accessed external memory was af-
fected by the algorithm. A ratio of 1 is poor: no change
has been made. A ratio close to 0 is a good result: almost
all external memory access costs are eliminated.

Figure 5 gives an alternative view of Figure 4, sorted by
E

DE . The bar chart shows data for scratchpads of size 4kb
and 8kb as well as 16kb.

Figures 4 and 5 demonstrate that SMMU allocation has
a real benefit. The column labeled E is always less than DE
in Figure 3: even when the execution time of OPEN and
CLOSE is taken into account, the SMMU has reduced the
WCET. Sometimes, the reduction is substantial. Over 95%
of all of the dynamic memory access operations in adpcm,
crc32, bf, gsm, rijndael and stringsearch are routed to the
scratchpad via the SMMU. The effects of accessing ex-
ternal memory is vastly reduced. OPEN and CLOSE still
incur a cost in each case, which can be quite high (39% of
DE in the case of stringsearch and 36% of DE for rijndael)
but negligible for adpcm, bf and crc32.

Figures 4 also shows that the SMMU’s comparator net-
work does not need to be very large to obtain good results,
as the maximum number of OPEN objects is actually 8. A
full 16kb scratchpad is also unnecessary in many cases. It
has a large benefit only for djpeg and ammp.

The mean value of DS is 47%. If the benchmarks are
assumed to be representative of real code, then it is pos-
sible to say that on average roughly half of the dynamic
memory access operations within a program can be routed
to scratchpad by the SMMU. (Assuming a 16kb scratch-
pad, 8-entry comparator network and L = 50.) This is not
as good as a similarly-sized data cache operating under
best-case conditions, because such an arrangement may
handle 99% of accesses or more. However, 47% is a worst-
case. In worst-case conditions, data cache behavior is both
difficult to analyze and extremely poor [26].

6 Further Investigation
Although Figures 4 and 5 include cases where the

SMMU is very successful, there is also a group of pro-
grams that do not greatly benefit from the SMMU. The
worst of these are ispell, gzip and mesa, where the WCET
of external memory operations is reduced by less than 1%.

This section gives a study of why the SMMU is not so
effective in some cases (section 6.1), and a discussion of
how this could be improved (sections 6.2 and 6.3).

6.1 SMMU Limitations
Two factors reduce the effectiveness of the SMMU.

Firstly, objects may be too large to be stored in the scratch-
pad. Figure 6 provides statistics about the sizes of the dy-
namic objects accessed along the WCEP in each program.

5% of the accesses use an object of size ≤ that given in
the first column, 25% use an object of size ≤ the second
column, and so on.

Figure 6 reveals that the lack of benefit is partly ex-
plained by very large objects which are frequently ac-
cessed, such as the 59kb objects used by mesa, the
74kb objects used by rsynth, the 1Mb objects used by
qsort or the 60Mb objects used by gzip and bzip2. The
bzip2 benchmark has a better E

DE than gzip because some
smaller objects are also used within dynamic data struc-
tures. These small objects can be allocated to the SMMU;
however, the bulk of dynamic memory accesses still have
to go to external memory.

The second problem is demonstrated by Figure 7. This
provides statistics about B(p), the benefit from OPENing
the object referenced by p. To obtain the data in Figure 7,
B(p) was computed for every access to p on the WCEP.
25% of accesses to some p have B(p) ≤ the number in the
first column, 50% have B(p) ≤ the number in the second
column, and so on.

Figure 7 shows that B(p) ≤ 0 occurs in real programs.
The WCET will be increased by OPENing p if B(p) ≤ 0.
This happens in equake, where over 75% of P should not
be OPENed, in dijkstra and lame (where over 50% should
not be OPENed), and to a lesser extent in art, crafty, gap,
vpr and several others. This typically occurs if a pointer is
only used once per definition, as in a double dereference.

6.2 Making Objects Smaller
The “SMMU allocation algorithm” is not able to split

large objects into smaller sections. For example, the gzip
and bzip2 benchmarks both include a SPEC test harness
which defines very large buffers (60Mb) for input and out-
put. Accesses to these buffers only make use of small
fixed-sized blocks, but because the block addresses are de-
rived from one pointer (the beginning of the buffer), the
allocation algorithm considers all 60Mb as a single ob-
ject. It naı̈vely assumes that the whole object should be
OPENed, when in fact it would be far more efficient and
practical to OPEN a block-sized area for each access. In
effect, this is how a cache operates: storing recently-used
data rather than entire objects. However, the SMMU can-
not be used in this way unless explicitly directed to do
so, e.g. by a code transformation to split large objects into
smaller parts.

For example, consider the following code from the
rsynth benchmark:



Benchmark sp Is Greater Than
5% 25% 50% 75% 95%

adpcm 504b 504b 504b 1kb 1kb
ammp 8b 2kb 2kb 2kb 2kb
art 40b 78kb 624kb 624kb 624kb
basicmath 15b 15b 25b 25b 40b
bf 616b 616b 616b 616b 616b
bzip2 20b 349kb 58Mb 58Mb 58Mb
cjpeg 128b 2kb 6kb 15kb 15kb
crafty 8b 24b 112b 228b 121kb
crc32 616b 616b 616b 616b 616b
dijkstra 8b 8b 804b 39kb 39kb
djpeg 128b 260b 15kb 15kb 15kb
fft 15b 15b 80kb 80kb 80kb
gap 24b 40b 101b 5kb 5kb
gsm 224b 224b 680b 680b 680b
gzip 63kb 64kb 60Mb 60Mb 60Mb
ispell 16b 24b 544b 2kb 794kb
lame 8b 92b 768b 1kb 16kb
mcf 30b 616b 616b 4Mb 4Mb
mesa 59kb 59kb 59kb 59kb 59kb
patricia 15b 45b 616b 616b 751kb
qsort 616b 1Mb 1Mb 1Mb 1Mb
rijndael 16b 524b 524b 616b 616b
rsynth 48b 48b 48b 74kb 74kb
stringsearch 33b 33b 33b 33b 55b
susan 9kb 9kb 9kb 9kb 9kb
twolf 16b 23kb 23kb 23kb 23kb
vpr 31b 31b 31b 31kb 31kb

Figure 6: Values of sp used within benchmark programs.

FOR I := 0 TO N DO
P [ I ] := s h o r t 2 u l a w ( Data [ I ] ) ;

END;

P and Data could be stored in scratchpad if the loop was
tiled into two nested loops:

FOR I := 0 TO N BY M DO
P r e f := OPEN(& P [ I ] , M, 0 ) ;
D a t a r e f := OPEN(& Data [ I ] , M, M) ;
FOR J := 0 TO M− 1 DO

P [ I + J ] := s h o r t 2 u l a w ( Data [ I + J ] ) ;
END ;
CLOSE( P r e f ) ; CLOSE( D a t a r e f ) ;

END;

This code transformation is known as loop tiling and it
is applied automatically by some compilers in order to im-
prove the efficiency of a cache [28]. However, it is not suit-
able for all access patterns. Within bzip2’s “sortIt” func-
tion, a 256kbyte variable is used by a bucket sort. Some
loops act on this variable sequentially, but others have a
“random” access pattern that is dependent on the data be-
ing sorted. Random access is not a problem when the en-
tire object can be loaded into scratchpad, but when the ob-
ject is too large to fit, there is no way to be sure which part
of the object will be needed next. These accesses need to
be directed to external memory; the only way to avoid this
is to choose a different sort algorithm, which might have
other disadvantages.

Benchmark B(p) Is Greater Than
25% 50% 75% 95%

adpcm 4.8×104 9.8×104 9.8×104 9.8×104

ammp 2.8×103 3.8×105 3.8×105 3.8×105

art -7.0×100 4.9×106 5.4×106 5.4×106

basicmath 4.5×101 4.6×102 4.6×102 3.0×106

bf 1.7×109 1.7×109 1.7×109 1.7×109

bzip2 1.4×102 3.9×107 3.9×107 3.9×107

cjpeg 3.2×103 7.5×104 1.3×106 1.3×106

crafty -3.0×100 4.2×101 1.9×102 6.7×103

crc32 3.4×109 3.4×109 3.4×109 3.4×109

dijkstra -2.0×102 -3.0×100 6.0×103 7.6×104

djpeg 4.7×103 1.1×104 6.7×104 2.1×105

fft 4.5×101 3.1×106 3.1×106 3.1×106

gap -3.0×100 4.6×101 1.9×103 1.0×108

gsm 3.6×103 3.9×107 3.9×107 3.9×107

gzip 3.3×107 3.8×107 1.3×108 3.3×108

ispell 3.0×101 1.6×102 4.6×104 6.4×106

lame -1.1×102 -3.0×100 1.1×103 2.7×105

mcf 5.6×102 1.2×107 2.2×107 2.2×107

mesa 1.9×106 1.9×106 1.9×106 1.9×106

patricia 4.5×101 1.6×103 1.6×103 5.0×103

qsort 3.7×107 7.9×107 7.9×107 7.9×107

rijndael 2.9×103 7.8×107 1.8×108 1.8×108

rsynth 5.3×104 5.3×104 3.0×105 3.0×105

stringsearch 3.0×102 3.0×102 3.0×102 8.8×102

susan 1.1×107 1.1×107 1.1×107 1.1×107

twolf 3.5×104 3.5×104 4.2×104 4.2×104

vpr -3.0×100 4.7×102 9.3×102 9.3×102

Figure 7: Values of B(p) within benchmark programs.

6.3 Increasing the Benefit of OPEN
This section examines several cases in which B(p) ≤

0, and proposes solutions. The first example is found
within the dijkstra benchmark, where over 50% of all
p ∈ P have B(p) ≤ 0. This is primarily because of an
operation in the “enqueue” function which finds the final
element in a linked list:

q L a s t := qHead ;
WHILE ( q L a s t . qNext <> NIL ) DO

q L a s t := q L a s t . qNext ;
END;

This is a misuse of the linked list data structure, since
a pointer to the final element could simply be stored. This
would improve the efficiency of the “enqueue” algorithm
(constant time rather than linear time) and vastly reduce
the number of dynamic memory accesses performed by
the benchmark. A similar problem causes inefficiency in
the ammp benchmark. The “a number” function counts
the elements of a linked list by iterating through it; us-
ing a counter variable would halve the number of dynamic
memory accesses performed by ammp.

In addition to a number of cases where objects are too
large, the art benchmark also contains a poorly-selected
data structure. “bus” is a 2D array of floating-point num-
bers which would be more efficiently used if its rows and
columns were transposed. This is because users of this



structure iterate through the rows of the array rather than
the columns, e.g.:

FOR t i := 0 TO numf1s−1 DO
Y[ t j ] . y := Y[ t j ] . y +

f 1 l a y e r [ t i ] . P ∗ bus [ t i ] [ t j ] ;
END;

Transposing rows and columns for “bus” would allow
the memory range bus[tj][0] to bus[tj][numfls-1] to be
OPENed outside the loop.

7 Conclusion
This paper has evaluated the effects of a combination of

a scratchpad and SMMU on the dynamic memory accesses
carried out by a set of benchmark programs. A scratchpad
enables time-predictable memory access operations. The
SMMU extends this to include the address transparency
of a cache, enabling time-predictable support for dynamic
data structures. Hard real-time programs can make use of
the SMMU to implement time-predictable and low-latency
access to dynamic data without complicating safe and tight
WCET analysis.

Experiments show that most memory access operations
using dynamic data structures can benefit from the SMMU
and scratchpad, even with a modest scratchpad size and a
low limit on the maximum number of OPEN objects. This
is partly a natural consequence of program designs that are
cache efficient. The SMMU approach is limited in similar
cases those where data cache behavior would be less than
ideal, such as memory accesses at random locations within
a large object. Suboptimal use of data structures is also a
significant problem in some benchmark programs; better
data structure choices would vastly improve performance.
However, the approach is also limited when objects are too
large, meaning that code transformations similar to loop
tiling should be applied by the compiler or programmer
so that large objects are processed in small sections where
possible. Future work should investigate this.
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