

Studying the Applicability of the
Scratchpad Memory

Management Unit

Jack Whitham
Real-time Systems Group, University of York

jack@cs.york.ac.uk

Part I

Motivation and Background

Timing Composition

● What's the easiest way to compute timing properties
of a complex embedded architecture?

– ?

Timing Composition

● What's the easiest way to compute timing properties
of a complex embedded architecture?

– Divide and conquer.

● The global timing properties of a system (program &
architecture) are determined by adding together
separate local analyses for each of its components.

● A timing-compositional architecture enables this.

Example

CPU cache

→ Timing Result
e.g. WCET

CPU
pipeline

Program

● Timing analyses are carried out separately for each
component, then added to obtain the timing result.

Timing-Compositional CPUs

● Not all components have the required properties.

● CPUs that do are typically simple:

– 68010, ARM7TDMI, JOP, PRET...

● Essential features for a t-c CPU:

– A timing accident (e.g. cache miss) generated
elsewhere does not change the internal state.

– No timing anomalies are generated internally.
– Limited throughput?

CPU Pipelines, in general

● Not timing-compositional:

– Deep pipeline, multiple issue, out-of-order...
– Timing anomalies may be generated internally.
– Timing accidents occurring elsewhere will

change the internal state.
● But some complex pipelines can be safely modeled:

– Virtual traces.
– CheckerMode.
– Single-path pipelines.

● How can these approaches be timing-compositional?

→→

“Conditional Compositionality”

● For complex pipelines, safe analysis requires isolation
from timing accidents elsewhere:

– Cannot freeze the entire pipeline instantaneously.
– Any timing uncertainty is unacceptable.

→ Timing Result
e.g. WCET

CPU
pipeline

C
ac

h e
 /

 B
us

Isolation mechanism

Isolation Mechanism

● On-chip RAM - provides time-predictable memory
access with zero uncertainty:

– scratchpad memory (SPM) or locked cache.

● Suggested ideal isolation property:

– Each static instruction has a fixed execution
time that is easily determined by analysis.

– Sufficient (arguably not necessary).

Ideal On-Chip RAM?

● Low-latency access to the working set.

● Each static instruction has a fixed execution time,
easily determined by analysis. (Isolation property.)

● No restrictions on the working set: any object can be
relocated on-chip for fast access.

● Programmer-friendly!

Data Cache Example

● Low-latency access to the working set. Yes.

● Each static instruction has a fixed execution time,
easily determined by analysis. No. (No isolation.)

● No restrictions on the working set: any object can be
relocated on-chip for fast access. Yes.

● Programmer-friendly! Yes.

Lockable Data Cache

● Low-latency access to the working set. Yes.

● Each static instruction has a fixed execution time,
easily determined by analysis. Yes.

● No restrictions on the working set: any object can be
relocated on-chip for fast access. No.

● Programmer-friendly! Maybe.

Lockable DC Restriction

● Consider two objects and a simple data cache:

000xxxx

001xxxx

010xxxx

011xxxx

100xxxx

101xxxx

110xxxx

111xxxx

tag line

apples

bananas

apples = 0110 001 0000;

bananas = 0000 001 0000;

Lockable DC Restriction

● In general, can't load & lock N+1 objects together in
an N-way associative cache

● Major restriction on the working set!

000xxxx

001xxxx

010xxxx

011xxxx

100xxxx

101xxxx

110xxxx

111xxxx

tag line

apples

bananas

apples = 0110 001 0000;

bananas = 0000 001 0000;

apples

?

Scratchpad Memory (SPM)

● Low-latency access to the working set. Yes.

● Each static instruction has a fixed execution time,
easily determined by analysis. Yes.

● No restrictions on the working set: any object can be
relocated on-chip for fast access. No.

● Programmer-friendly! Maybe.

SPM Restriction

● If a program moves an object between external
memory and SPM, its address changes.

Data

Copy of Dataint * a

int * b

Data
int * a

int * b

before after

a[1]=2;
b[1]=3;
(a[1] == 3) is TRUE

a[1]=2;
b[1]=3;
(a[1] == 3) is FALSE

SPM Restriction

● In general: relocating objects creates pointer aliasing
and pointer invalidation problems.

● Most SPM research concentrates on domains where
this is not an issue:

– Restrict support to instruction memory
– Restrict support to local & global variables
– i.e. Restrictions on the working set.

● Dominguez et al. came up with a smart solution,
but it loses the isolation property.

Scratchpad Memory
Management Unit (SMMU)

● Low-latency access to the working set. Yes.

● Each static instruction has a fixed execution time,
easily determined by analysis. Yes.

● No restrictions on the working set: any object can be
relocated on-chip for fast access. Yes.

● Programmer-friendly! Maybe :)

Address Transparency

● Objects can be relocated between external memory
and SPM, as in previous work.

● But the relocations also update a “remapping table”,
so that an object in SPM is accessed using its address
in external memory.

● Pointer aliasing and invalidation: not an issue.

Address Transparency Example

● If a program moves an object between external
memory and SPM, its address does not change.

Copy of Data

Data

int * a

int * b

before after

a[1]=2;
b[1]=3;
(a[1] == 3) is TRUE

a[1]=2;
b[1]=3;
(a[1] == 3) is TRUE

SMMU
remap

Data

int * a

int * b

SMMU
remap

Part II

Evaluation

Is the SMMU Useful?

● In theory, yes (as discussed)

● In case studies, yes (see earlier publications)

● But in general?

– Suitable for all working sets used in practice?
– Programmer friendly in practice?
– That's the second half of this paper.

Allocation Algorithm

● How effective is automatic allocation of SPM space,
when any data structure can be supported?

● Essential for “programmer friendliness”.

● Useful for evaluation: how well does the SMMU+SPM
work in practice?

Evaluation Approach

● Take a set of benchmark programs.

– Not necessarily real-time: intended as
representative of programs in general.

● Use an algorithm to allocate SPM space for each
program such that the estimated WCET is minimised.

● Identify the situations where the SPM couldn't be
used, and find out why.

Allocation Algorithm

● Similar to Deverge and Puaut, in Proc. ECRTS'07.
● The control flow graph is partitioned at every

entrance/exit from a loop.
● The references to objects used within each partition

are determined by def/use analysis.
● A subset of these references to objects are chosen for

the SPM.
● The main task of the algorithm is to choose the

subsets such that the WCET is minimized.

Example
void adpcm_coder(indata, outdata, len, state)
{
 outp = (signed char *)outdata;
 inp = indata;
 /* ... */
 for (; len > 0 ; len--) {
 val = *inp++;
 /* ... */
 delta |= sign;
 index += indexTable[delta]; /* size: 16 */
 if (index < 0) index = 0;
 if (index > 88) index = 88;
 step = stepsizeTable[index]; /* size: 89 */

 if (bufferstep) {
 outputbuffer = (delta << 4) & 0xf0;
 } else {
 *outp++ = (delta & 0x0f) | outputbuffer;
 }
 bufferstep = !bufferstep;
 }
 /* ... */
}

Regions:

Example
char abuf[NSAMPLES/2];
short sbuf[NSAMPLES];

main() {
 /* ... */
 while(1) {
 n = read(0, sbuf, NSAMPLES*2);
 if (n == 0) break;
 adpcm_coder(sbuf, abuf, n/2, &state);
 write(1, abuf, n/4);
 }
 /* ... */
}

main

while(1)

for(;len < 0; len--)

Reducing the WCET

● Method 1: move a reference to an object in region R
into the SPM.

– Benefit: accesses using that reference within R
complete in 1 clock cycle instead of L.

– Cost: each crossing of the boundary of R incurs
a penalty for transferring the object.

main

while(1)

for(;len < 0; len--)

Reducing the WCET

● Method 2: expand the set of regions that a particular
reference to an object is in SPM.

– Benefit: fewer of the total number of boundary
crossings incur a penalty.

– Cost: SPM space is in use for longer periods.

main

while(1)

for(;len < 0; len--)

Statistics

● Although the SMMU can support any sort of data, the
evaluation considered only accesses to dynamic data
structures.

– Where the address is neither decided at link-
time, nor derived from the stack pointer.

Statistics

 Number of external memory accesses

Statistics

 WCET of external memory accesses

Comments

● Good results for some programs.

● But plenty of cases where the SPM did very little
good... why?

Problem #1: Too Large

● Sometimes a benchmark will reference a very large
object using a pointer.

– rsynth: 74kb arrays
– bzip2: 60Mb of data to be compressed
– qsort: 1Mb to be sorted

● Too large to fit entirely in SPM. Accesses go direct to
external memory.

● No method of “tiling” is currently considered.

Problem #2: No Benefit

● Sometimes the cost of transferring an object to SPM
outweighs the time saved by using it.

– equake: Happens for more than 75% of the
object references

– dijkstra: for over 50%.

● SPM transfers come in pairs: to/from.
● No optimization for “read only” references is

currently used.

Problem #3: Poor Algorithms

● Sometimes, a better choice of algorithm or data
structure would vastly reduce the memory accesses.

– dijkstra benchmark: misuse of linked list.
– art: matrix rows/cols should be transposed.

● A problem for data caches, too.
● A side effect of SMMU+SPM allocation is that poor

data locality is revealed.

The Next Steps

● Find and evaluate solutions for the
first two problems.

● Directly compare SMMU+SPM performance
against a data cache.

● Investigate the possibility of adding SMMU+SPM
allocation to a compiler.

● Consider multithreaded/multicore systems.

Conclusion

● Even these limited experiments have demonstrated
that dynamic data structures can be stored in SPM:

– Preserving the isolation property, and
– Improving the WCET that can be

determined by analysis.

● Plenty of opportunities for further exploration.

Thank you for your Attention

● Questions & comments most
welcome, always.

● More information is on the
www, search keywords:
“SMMU, Whitham”

This slide intentionally left blank

(For the purposes of this talk, ignore instructions
and instruction caching: analysis of instruction
caches is a relatively well-understood problem.)

Why do we use Data Caches?

1. Improve Execution Time

Caches solve two problems but create a third.

Problem Solution

Store working data set on-chip Yes

Yes

No

Allow objects to be relocated when locked No

Solved using a
Cache?

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

System
ARM MPcore 79 210 70
StrongARM-110 17 50 50
PPC 405 33 100 125
Microblaze 31 125 125

Latency
(CPU clock cycles)

CPU frequency
(MHz)

Bus frequency
(MHz)

Caches solve two problems but create a third.

Problem Solution

Store working data set on-chip Yes

Yes

No

Allow objects to be relocated when locked No

Solved using a
Cache?

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

System
ARM MPcore 79 210 70
StrongARM-110 17 50 50
PPC 405 33 100 125
Microblaze 31 125 125

Latency
(CPU clock cycles)

CPU frequency
(MHz)

Bus frequency
(MHz)

1. Improve Execution Time

2. Transparency to Programs

Caches solve two problems but create a third.

Problem Solution

Store working data set on-chip Yes

Yes

No

Allow objects to be relocated when locked No

Solved using a
Cache?

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

- Are dynamic data structures and pointers important in
hard real-time systems?

- If not... well, they would be useful!

Caches solve two problems but create a third.

Problem Solution

Store working data set on-chip Yes

Yes

No

Allow objects to be relocated when locked No

Solved using a
Cache?

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

2. Transparency to Programs

Caches solve two problems but create a third.

Problem Solution

Store working data set on-chip Yes

Yes

No

Allow objects to be relocated when locked No

Solved using a
Cache?

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

3. Time-predictability?

Caches solve two problems but create a third.

Problem Solution

Store working data set on-chip Yes

Yes

No

Allow objects to be relocated when locked No

Solved using a
Cache?

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

3. Time unpredictability!

Data Cache: arch-enemy of predictable systems

400k
600k

800k
1000k

1200k
1400k

1600k
1800k

2000k
2200k

2400k
2600k

2800k
3000k

3200k
3400k

3600k
3800k

4000k
4200k

4400k
4600k

4800k
5000k

5200k
5400k

0

500

1000

1500

2000

2500

3000

3500

Measured Execution Time

F
re

qu
en

cy

WCET?

What's the Issue?

- The sequence of addresses used by a program is called
its reference string.

- Depends on many things:
 Array subscripts x = random(); z = A[x];

 Base pointers A = malloc(...);

 Path through the code if(z) { y = A[x]; } else ...

WCET Analysis?

- For any memory access operation X...

- The preceding reference string defines the contents
of the cache.

- and therefore the execution time of X.

The execution time of each subprogram
is potentially dependent on the behaviour
of all other subprograms.

Possible Improvements

2. Cache locking: prevents any updates to all (or
part) of the cache; the reference string has no
effect.

1. Scratchpad: a small, fast on-chip memory, which
can be used to store commonly-accessed data.

Scratchpad
CPU

Bus within CPU core

External
Memory

External
memory bus

Using a scratchpad
A cache implicitly
relocates data to on-
chip memory.

A scratchpad makes
that process explicit,
i.e. controlled by the
program.

No dependence on
reference string!

Scratchpad
CPU

Bus within CPU core

External
Memory

External
memory bus

Data

Scratchpad
CPU

Bus within CPU core

External
Memory

External
memory bus

Data
Copy of Data

A problem
Problem Solution

Store working data set on-chip Yes

No

Yes

Allow objects to be relocated when locked No

Solved using a
Scratchpad?

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked objectPhysical relocation of data causes addresses to

change. Issues are pointer aliasing and pointer
invalidation: program semantics are affected!

Data

Copy of Dataint * a

int * b
Data

int * a

int * b

Using a locked cache

000xxxx

001xxxx

010xxxx

011xxxx

100xxxx

101xxxx

110xxxx

111xxxx

Way 0

tag line

Way 1

tag line

Way 2

tag line

Way 3

tag line

Address 101000011 001 1000

“Locking” disables the cache update mechanism: no
dependence on the reference string.

Typical locking mechanisms:
entire cache, entire way, single line

000xxxx

001xxxx

010xxxx

011xxxx

100xxxx

101xxxx

110xxxx

111xxxx

Way 0

tag line

Way 1

tag line

Way 2

tag line

Way 3

tag line

apples
bananas

peaches
grapes

apples

bananas

peaches

grapes

apples = 000100110 001 0000;

bananas = 101100000 001 0000;

peaches = 110101010 001 0000;

grapes = 101000100 001 0000;

plums plums = 111110000 001 0000;

000xxxx

001xxxx

010xxxx

011xxxx

100xxxx

101xxxx

110xxxx

111xxxx

Way 0

tag line

Way 1

tag line

Way 2

tag line

Way 3

tag line

apples
bananas

peaches
grapes

apples

bananas

peaches

grapes

apples = 000100110 001 0000;

bananas = 101100000 001 0000;

peaches = 110101010 001 0000;

grapes = 101000100 001 0000;

plums plums = 111110000 001 0000;

Another problem
Problem Solution

Store working data set on-chip Yes

Yes

Yes

Allow objects to be relocated when locked No

Solved using a
Locked Cache?

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

- For an n-way cache, a maximum of n objects can be
safely locked unless guarantees can be made about
their addresses.

- One-size-fits-all.

What (I think) we want
Problem Solution

Store working data set on-chip Yes

Yes

Yes

Allow objects to be relocated when locked Yes

Solved
using ???

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

??? = hardware that replaces a cache.

Other solutions

- Don't use pointers or dynamic data structures:
Common in present-day hard RTS.

- Use scratchpads only for temporary storage, not for
existing objects – Wellings, Schoeberl

- Shape analysis and cache-aware memory allocation
(CAMA) – Herter, Reineke, Wilhelm

- Don't relocate data: just page the scratchpad contents
in and out – Barua et al.

Problem Analysis

Problem Solution

Store working data set on-chip Yes

Yes

Yes

Allow objects to be relocated when locked Yes

Solved
using ???

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

+ Scratchpad memory is required

Problem Solution

Store working data set on-chip Yes

Yes

Yes

Allow objects to be relocated when locked Yes

Solved
using ???

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

+ Program explicitly states which objects must be
locked into scratchpad before their data is used

+ Any access to a locked object can be treated as a
cache hit.

+ Any other access can be treated as a cache miss...
but with no effect on the locked objects!

Problem Solution

Store working data set on-chip Yes

Yes

Yes

Allow objects to be relocated when locked Yes

Solved
using ???

Program execution time is bounded by
off-chip memory access time

Dynamic data structures and pointers
must be supported

Logical address of each object must not
change as data is moved on/off chip

Worst-case execution time needs to be
calculated for a hard real-time system

Ensure that data access times are
predictable during WCET analysis

Locking mechanism depends on the
address of each locked object

+ Hardware provides an address remapping f.

Physical address = f (Logical address)

+ When a locked object is accessed, an arbitrary offset
is added to the logical address to obtain the physical
address - in scratchpad!

- Scratchpad gains the transparency of a cache while
retaining time-predictability.

Illustrating the concept

From three perspectives.

- The program;

- The hardware;

- The WCET analyser.

Illustration 1: the program

FOR i FROM 0 TO size-1 DO
sum := sum + array[i];

END FOR;

x := start_of_list;
WHILE x <> NIL DO

sum := sum + x.element;
x := x.next;

END WHILE;

handle := OPEN(array, size, phys_addr);
FOR i FROM 0 TO size-1 DO

sum := sum + array[i];
END FOR;
CLOSE(handle);

x := start_of_list;
WHILE x <> NIL DO

sum := sum + x.element;
x := x.next;

END WHILE;

handle := OPEN(array, size, phys_addr);
FOR i FROM 0 TO size-1 DO

sum := sum + array[i];
END FOR;
CLOSE(handle);

x := start_of_list;
WHILE x <> NIL DO

handle := OPEN(x, SIZEOF(*x), phys_addr);
sum := sum + x.element;
x := x.next;
CLOSE(handle);

END WHILE;

Illustration 2: the hardware
OPEN/CLOSE

DMAScratchpad
External
Memory

1.

2. Add/remove remapping table entry

MEMORY ACCESS: LOAD/STORE

LOGICAL
ADDRESS

REMAPPING
TABLE

PHYSICAL
ADDRESS

Scratch
pad

External
MemoryCPU

DATA BUS

handle :=
OPEN(array, size,
phys_addr);

sum := sum +
array[i];

OPEN/CLOSE

DMAScratchpad
External
Memory

1.

2. Add/remove remapping table entry

MEMORY ACCESS: LOAD/STORE

LOGICAL
ADDRESS

REMAPPING
TABLE

PHYSICAL
ADDRESS

Scratch
pad

External
MemoryCPU

DATA BUS

handle :=
OPEN(array, size,
phys_addr);

sum := sum +
array[i];

REMAPPING TABLE

 L

o
g
ic

a
l
a
d

d
re

s
s

(g
e

n
e

ra
te

d
 b

y
 C

P
U

)

Match in table?

Object Physical
Address

a 0x1000
b 0x1200
c 0x80
d 0x1800

External RAM
physical address range:

0x0..0xffff

Scratchpad
physical address range:
0x20000..0x207ff

P
h
y
s
ic

a
l

a
d

d
re

s
s

Object Base Size Offset
Address

a 0x1000 0x140 0x1f000
c 0x80 0x100 0x204c0

-- -- -- --
-- -- -- --

Object Physical
Address

Copy of a 0x20000
Copy of c 0x20540

OPEN(a, 0x140, 0x20000);

OPEN(c, 0x100, 0x20540);

handle := OPEN(array, size, phys_addr);
FOR i FROM 0 TO size-1 DO

sum := sum + array[i];
END FOR;
CLOSE(handle);

x := start_of_list;
WHILE x <> NIL DO

handle := OPEN(x, SIZEOF(*x), phys_addr);
sum := sum + x.element;
x := x.next;
CLOSE(handle);

END WHILE;

Memory access time
2 • DMA_Cost(size) + size

Memory access time
2 • length • DMA_Cost(SIZEOF(*x)) + 2

Accesses to “x” are guaranteed to reference
scratchpad: “guaranteed cache hits”

v0

v1

v2

v3
e0

e1

e2

e3

OPEN “B”

OPEN “A”

Illustration 3: the WCET analyser

 a := x[0];

 x[i] := b;

ref := OPEN(x, SIZEOF(*x), phys_addr);

CLOSE(ref);

 b := x[1];

Generating physical addresses

- OPEN/CLOSE operations must be statically
planned offline: e.g. by the programmer, during
compilation, during post-compilation analysis.
- Scratchpad space must be allocated in advance.

- The size of objects being OPENed or CLOSEd must
be known before execution.

- Similar to loop bounds...

Weaknesses of the approach

Weaknesses of the Approach

- Data locality can
only be exploited
if it can be
predicted
offline.

FOR x FROM 0 TO size-1 DO
sum := sum + array[x];

END FOR;

FOR x FROM 1 TO count DO
sum := sum + array[Random(x)];

END FOR;

x := start_of_list;
WHILE x <> NIL DO

sum := sum + x.element;
x := x.next;

END WHILE;

Weaknesses of the Approach

- The set of objects that are OPEN at any point in
the program must be well-defined.

v0

v1

v2

v3
e0

e1

e2

e3

OPEN “B”

OPEN “A”

- But - still easier than considering abstract cache states
because the number of possible states is so small, being
unaffected by the reference string.

Implementation, Evaluation and Results

Scratchpad Memory Management Unit
(SMMU)

CPU
External

RAM

External
memory bus

SMMU

Scratchpad

SMMU: remapping table + DMA controller

Implemented on an FPGA and in a simulator

Experimental Assumptions

- Consider only accesses to dynamic data structures,
i.e. LOAD/STORE operations with addresses that are
unknown at compile time.

- Accesses to static data and instruction memory
assumed handled by scratchpad.

- Single program, single thread, single CPU.

Initial Results

ycc_rgb_convert function (libjpeg) on a simulated
platform:

Data cache “best” case

SMMU best and worst case

Data cache “worst” case

External memory only

0 100 200 300 400 500 600 700

Access time (millions of clock cycles)

Evaluation

- Evaluation really requires hard real-time benchmarks
that use dynamic data structures.

- But those don't exist because of limitations of current
WCET analysis.

- Solution: study conventional benchmark programs
(SPEC, Mediabench, MIBench, etc.)

- Rationale: representative of real software.

- I adapted the non-real-time benchmarks to support
pseudo-WCET analysis.

- I executed them once to capture:

- control flow graph.

- loop bounds (max. number of iterations).

- the sizes of objects accessed by the code.

- Subsequent WCET analysis uses this data with no
constraint on conditional statements.

- not single-path analysis.

- I developed an algorithm to add SMMU operations
OPEN and CLOSE to the programs.

- The algorithm tries to minimise E:

Let E = WCET of accesses to dynamic data after the
algorithm has done its work.

Let DE = baseline: maximum WCET of accesses to
dynamic data - i.e. all go off chip.

E / DE = degree of WCET improvement achieved using
the SMMU.

Results
gz

ip
is

pe
ll

m
es

a
cr

af
ty

am
m

p
bz

ip
2

eq
ua

ke
pa

tr
ic

ia
la

m
e

su
sa

n
m

cf fft
cj

pe
g

di
jk

st
ra ar

t
vp

r
ga

p
rs

yn
th

rij
nd

ae
l

ba
si

cm
at

h
dj

pe
g

st
rin

gs
ea

rc
h

gs
m

ad
pc

m bf
cr

c3
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4096 16384

R
a

tio
 E

 /
 D

E

Scratchpad size:

Summary of Findings

- Quite often, objects are too large to be OPENed.

gzip and bzip2 benchmarks in particular!

- The majority of memory accesses in each
program are performed within a few “hot spots”

Summary of Findings

- Data locality can be a problem...
but investigation revealed -

1. The algorithms being used were sometimes poor,
e.g. MIBench “Dijkstra”: iterate through a linked list to add

one element to the tail!

2. Or very inefficient with a cache as well,
e.g. SPEC “Art”: matrix multiply iterates down a column

instead of across a row.

3. Or the code could be easily refactored to make
OPEN and CLOSE more efficient.

e.g. Mediabench “Lame”: one frequently-called procedure
repeatedly dereferences the same pointer.

Conclusion

- Some problems are not solved by either caches or
scratchpads.

- The SMMU is a possible solution.

- Investigation reveals that the SMMU's ability to reduce
the WCET of a program is dependent on how it uses
memory.

- Future work: examination and classification of
memory-accessing hotspots in programs; loop tiling;
paging; consider multi-CPU/multi-thread.

Thankyou

The Real-time Systems Group
at the University of York.
http://www.cs.york.ac.uk/rts/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

