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Abstract—We present a multitasking scratchpad memory reuse
scheme (MSRS) for the dynamic partitioning of scratchpad
memory between tasks in a preemptive multitasking system.
We specify a means to compute the worst-case response time
(WCRT) and schedulability of task sets executed using MSRS.
Our scratchpad-related preemption delay (SRPD) is an analog
of cache-related preemption delay (CRPD), proposed in previous
work as a way to compute the worst-case cost imposed upon a
preempted task by preemption in a multitasking system. Unlike
CRPD, however, SRPD is independent of the number of tasks
and the local memory size.

We compare SRPD with CRPD by experiment and determine
that neither dominates the other, i.e. either may be better for
certain task sets. However, MSRS leads to improved schedula-
bility versus cache when contention for local memory space is
high, either because the local memory size is small, or because
the task set is large, provided that the cost of loading blocks from
external memory to scratchpad is similar to the cost of loading
blocks into cache.

I. INTRODUCTION

Scratchpad memory (SPM) is a form of local memory.
Local memory is the memory resource closest to the CPU.
Typically a cache is used [1], but SPM can be substituted,
bringing various advantages for time-predictable operation [2]
and reduced energy usage [3]. SPM is present in a number of
CPUs including Cell [4].

There has been recent interest in using SPM within real-
time systems instead of cache [5], [6], [7], [8]. But support
for preemptive multitasking is a problem: how should the SPM
be managed if tasks can preempt each other? The SPM can
be statically partitioned, allocating a fixed amount of space
to every task [9]. However, large tasks (and large task sets)
call for a dynamic scheme that allows the space used by one
task to be reused by another [10]. We call this a multitasking
scratchpad reuse scheme (MSRS).

The basic MSRS approach involves a new parameter for
each task τj which specifies the quantity of SPM space re-
quired by τj . The OS reserves this space before τj begins, and
restores the previous usage of the space when τj completes.
MSRS allows this quantity to be anything from zero to the
total number of blocks provided by the physical hardware [10].
The impact of a preempting task τj on a preempted task τi
is limited to the time cost of reserving and restoring the SPM
space required by τj . In this paper, this time cost is known as
scratchpad-related preemption delay (SRPD).

With cache, space used by one task can be reused by another
as a consequence of the cache replacement policy. In a hard
real-time system it is important to establish the impact of a
preempting task τj upon a preempted task τi. This impact is
known as cache-related preemption delay (CRPD). CRPD may
be determined by considering which cache blocks are reused
by preempted tasks and evicted by preempting tasks. Recent
work has established a number of approaches for this [11],
[12], [13], [14], [15], [16], [17].

Figure 1 shows how SRPD and CRPD are compared in
this paper. SRPD and CRPD consider the interactions between
pairs of tasks τi and τj . In order to determine how SR-
PD/CRPD affect the schedulability of the system as a whole,
we use response time analysis (RTA). RTA determines the time
interval between the release of a task and its completion, which
may include preemption delay. We use worst-case response
time (WCRT) analysis [18] as this determines an upper bound
on the response time, and hence indicates if task deadlines
may not be met. To distinguish between SRPD/CRPD analysis
alone, and SRPD/CRPD used in conjunction with WCRT
analysis, we denote the latter by SRPD-RTA and CRPD-
RTA respectively.

An MSRS named Carousel has been specified in an earlier
paper and a basic comparison with cache has already been
carried out [10]. However, this was a proof of concept. It made
use of measurements instead of static analysis to determine
worst-case execution times (WCETs). It used simulation rather
than obtaining timings from real hardware, and it failed
to properly distinguish between a specific implementation
(Carousel) and the general properties of MSRS. Some of the
improvements observed in [10] are specific to the (simulated)
hardware considered, and do not generalize.

The contributions of this paper are as follows. We describe
the MSRS approach in its simplest form. We specify SRPD
as a way to determine the impact of task preemption with
MSRS, and SRPD-RTA as a way to analyze the schedulability
of systems using MSRS, maintaining an analogy to CRPD
and CRPD-RTA throughout. Then, we use a working system
implementation, based on Carousel but greatly simplified, to
obtain the parameter values needed to compare the schedu-
lability of task sets with both SRPD-RTA and CRPD-RTA
as shown in Figure 1. We show that some task sets are
schedulable with MSRS but not with cache and vice versa.
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Fig. 1. How SRPD and CRPD are compared in this paper. Two levels of analysis are used. Firstly, SRPD/CRPD analysis determines the impact of each task
τj on a lower-priority task τi. Secondly, SRPD-RTA/CRPD-RTA analysis determines whether a task set is schedulable given the overheads of SRPD/CRPD.
CRPD and CRPD-RTA analysis are described in previous work (section II).

We show that MSRS is preferable when contention for local
memory space is high, because the local memory size is small,
or because the task set is large.

Our comparisons focus on simple cases that allow us to
characterize the inherent differences between MSRS and cache
and the benefits of one or the other. We use small benchmark
tasks executed on a timing-compositional architecture [19]
(entirely free of timing anomalies) with a perfect data cache,
and either a direct-mapped instruction cache or an instruction
SPM. The tasks are sufficiently small that each task fits entirely
in local memory, but when combined into a task set, the total
size is larger than local memory, and hence some reuse of
local memory is required. This assumption means that no
conflict misses occur [20], and furthermore, we can use a
simple scheme to allocate SPM space to tasks, thus clarifying
the comparison results.

The structure of this paper is as follows. Section II describes
how CRPD-RTA analysis is carried out. Section III specifies
SRPD-RTA analysis. Section IV obtains realistic parameter
values for SRPD and CRPD from a working implementation,
then carries out a comparison using the approach shown in
Figure 1. Section V describes further comparisons of a similar
nature, in which the reasons for the different behavior of
MSRS and cache are explored, Section VI discusses related
work and Section VII summarizes the findings.

II. WORST-CASE RESPONSE TIME

A real-time task set is schedulable if the worst-case re-
sponse time (WCRT) Ri of each task τi is no greater than
its deadline Di. A schedulability test may be performed to
determine if a particular task set is schedulable. We assume
a set of n tasks scheduled using fixed priority preemptive
scheduling. Each task τi has a unique priority i, with τ1 having
the highest priority, and task τn having the lowest priority.

A. WCRT General Form

The WCRT equation gives the maximum amount of time
Ri between the release of a task τi (the point in time when τi
becomes runnable) and the completion of τi. τi has a period
Ti which is the minimum interval between invocations of τi,
a bounded WCET Ci and a blocking time Bi which is the
maximum amount of time τi can spend waiting for a shared
resource due to the execution of lower priority tasks.

Let hp(i) be the set of tasks with a higher priority than τi.
If hp(i) is not empty, then execution of τi may be suspended
whilst τj ∈ hp(i) is executed - this is called interference.
Response time analysis [18] for constrained deadline tasks
(where Di ≤ Ti) takes this time into account:

Ri = max(Bi, CS
from) + CSto + Ci+∑

j∈hp(i)

⌈
Ri
Tj

⌉
(CSto + Cj + CSfrom)

(1)

Equation (1) extends the standard response time analysis
to include OS overheads relating to context switching and
scheduling. CSto is the time taken to switch to a task after an
event releases it, and CSfrom is the time taken to switch away
from a task. Both are critical sections. Typically, CSto and
CSfrom are implicitly considered as part of the execution time
bound Ci; however, we need to handle these costs explicitly.

Although the context switch away from a job of task τi
does not count directly towards its response time, which is
measured up to the point at which the job completes its
normal execution, this context switch may cause a delay to
the following job of τi. For tasks with constrained deadlines
(Di ≤ Ti), the maximum amount of additional interference
or indirect blocking a previous job of task τi can cause to
the next job of task τi is limited to the amount of post-
completion execution carried out after the end of the task’s
normal execution, i.e. CSfrom. Furthermore, this effect can
only occur if the CPU remains busy with the context switch
or higher-priority execution until after the next job of task τi is
released. Hence jobs of task τi can suffer either blocking from
lower-priority tasks, or interference due to post-completion
execution related to the previous job of the same task, but not
both. The effect can be accounted for by including CSfrom in
the blocking term max(Bi, CS

from) in a similar way to the
sufficient schedulability test given in Section 3.4 of [21].

The WCRT of task τi appears on both the left and right hand
sides (RHS) of (1); however, as the RHS is a monotonically
non-decreasing function of Ri, the equation can be solved via
fixed point iteration. This starts with an initial value e.g. Ri =
Ci and iterates until Ri either converges or exceeds the task’s
deadline. We note that convergence can be speeded up by
starting with a lower bound on Ri as an initial value [22].

The WCET of task τi depends on the local memory type.
We use Ccache

i to mean the WCET assuming cache and
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blocking times Bcache
i and Bspm

i . Ccache
i and Cspm

i include the
cost of executing instructions, and the cost of loading those
instructions from external memory. Ccache

i and C
spm
i assume

that τi is executed non-preemptively. Preemption delays are
considered separately, as discussed in the following sections.
Bcache
i and Bspm

i include blocking due to lower-priority tasks,
and any post-completion execution related to task τi, specif-
ically CSfrom, and for SPM, the additional cost of restoring
the SPM contents. Bcache

i and Bspm
i are formally defined later.

B. CRPD-RTA

When a task τi is preempted by task τj , some of the cache
blocks used by τi may be evicted by τj . This means that
the execution time of task τi is increased. Some additional
cache misses occur as the evicted blocks are reloaded. The
increase in execution time is the cache-related preemption
delay (CRPD). CRPD can be integrated into WCRT analysis
as described in [16], [17]. In this paper, the combination is
called CRPD-RTA analysis.

CRPD can be applied to both instruction and data caches.
Our focus in this paper is on direct-mapped instruction caches
only, as these have all of the properties necessary for our inves-
tigation. In this paper we determine the CRPD using the ECB-
Union/UCB-Union approach [16], which safely estimates the
worst-case CRPD when task τj preempts τi.

For each task τi, we use WCET analysis to determine ECBi,
the set of evicting cache blocks. This set contains the cache
blocks which might be used by τi as it executes [12]. ECBi is
determined by considering the addresses of the instructions in
the task and where they map to within the cache.

We also use WCET analysis to determine UCBi, the set of
definitely-cached useful cache blocks (DC-UCBs) at each point
in task τi, being the set of cache blocks that must be in cache
at that point and may be reused provided that there is no
preemption [15]. There is one DC-UCB set for each possible
preemption point, but as a safe approximation, we can use
whichever of these maximizes the subsequent equations.

The intersection between ECB sets and UCB sets for pairs
of tasks is the matter of interest, because any cache block
evicted by a higher-priority task τj and certainly used by
a lower-priority task τi will result in a cache miss that is
not included in Ccache

i . As shown in [12], the extra cache
misses are taken into account within the CRPD-RTA equation
by introducing γCRPD

i,j , the preemption-related delay imposed
upon τi as a result of cache misses caused by τj . Note that
τj may impose a preemption-related delay on τi by causing
cache misses within τi itself and within tasks of intermediate
priority between i and j. The CRPD-RTA equation is:

RCRPD
i = Bcache

i + CSto + Ccache
i +∑

j∈hp(i)

⌈
RCRPD
i

Tj

⌉
(CSto + Ccache

j + CSfrom + γCRPD
i,j )

(2)

where
Bcache
i = max(Bi, CS

from) (3)

C. UCB-Union

UCB-Union is one definition for γi,j . Introduced by Tan
and Mooney [13], UCB-Union dominates an earlier ECB-only
approach described by Busquets et al. [12].

Define aff(i, j) as the set of tasks that might be preempted
by τj whilst τi is running or preempted. This includes τi, and
all tasks with a priority between i and j. Define BRTcache as
the time needed to load a single cache block from external
memory.

UCB-Union takes the union of all UCBs that might be
preempted by τj whilst τi is running or preempted. It then
excludes UCBs that are not evicted by τj . This gives an upper
bound on the CRPD imposed by τj on τi [16]:

γucbu
i,j = BRTcache

∣∣∣∣∣∣
 ⋃

∀k∈aff(i,j)

UCBk

 ∩ ECBj

∣∣∣∣∣∣ (4)

D. ECB-Union

UCB-Union is safe, but it is not necessarily precise, and an
alternative view of the problem can sometimes produce tighter
bounds on γi,j .

The ECB-Union version of γi,j finds the maximum number
of UCBs belonging to some task in aff(i, j) that could be
evicted by τj including cases where τj is also preempted by
some higher priority task in hp(j). The definition is [16]:

γecbu
i,j = BRTcache max

∀k∈aff(i,j)


∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hp(j)∪{j}

ECBh

∣∣∣∣∣∣


(5)
Like UCB-Union, ECB-Union is safe but not necessarily
precise. It is incomparable with UCB-Union, and in [16],
Altmeyer, Davis and Maiza state that WCRT analysis should
be performed for each task τi using both γucbu

i,j and γecbu
i,j , with

the minimum value of Ri used in each case:

RCRPD
i = min

(
Recbu
i , Rucbu

i

)
(6)

This is an important way to improve precision without com-
promising safety since neither UCB-Union nor ECB-Union
may produce an exact WCRT.

III. SCRATCHPAD-RELATED PREEMPTION DELAY (SRPD)

An instruction cache may be replaced by an SPM [5]. This
substitution simplifies the CPU hardware, reduces its energy
consumption [3] and may improve the precision of WCET
analysis [2]. However, tasks must manage the local memory
resource explicitly. Small tasks (and small numbers of tasks)
may permit a static allocation of code to SPM, unchanged
during execution, but all other cases force reuse of SPM space
while tasks execute.

A. Multitasking Scratchpad Reuse Scheme

A multitasking scratchpad reuse scheme (MSRS) shares
SPM space between multiple tasks.

MSRS involves extra steps during context switches. When
the OS switches from one task (τi) to another (τj), the MSRS



ensures that all of the SPM space required by task τj is
available for use by τj . Let Sspm

j be the total number of SPM
blocks required by τj .

The basic MSRS implementation involves the following
four steps, which take place whenever task τj executes:

Save
The current contents of Sspm

j SPM blocks are saved
in external memory. These belong to preempted
tasks. The WCET of the Save step is Csave

j . If the
blocks are read-only (e.g. code blocks) it is sufficient
to only Save the address of each block.

Load
A part of task τj is loaded from external memory
to SPM. The WCET of all Load steps during τj is
C load
j . Up to Sspm

j blocks may be Loaded during each
step.

Execute
A part of task τj is executed from SPM. The WCET
of all Execute steps during τj is Cexecute

j .
Restore

Upon completion, the original contents of the Sspm
j

SPM blocks are restored. The WCET of the Restore
step is Crestore

j .

C
spm
j , the WCET of task τj , may be defined as follows:

C
spm
j = C load

j + Cexecute
j (7)

The CRPD analysis is not directly applicable to SPM because
local memory blocks are not loaded implicitly as for cache.
Instead, they are loaded explicitly during the Load and Restore
steps. Nevertheless, the time cost of Save and Restore acts
analogously to CRPD, increasing the WCRT of lower-priority
tasks. Hence, we may define scratchpad-related preemption
delay (SRPD) in terms of Save and Restore.

B. SRPD-RTA Equation

Scratchpad-related preemption delay (SRPD) defines γSRPD

as follows:
γSRPD
i,j = Csave

j + Crestore
j (8)

Like γucbu, this is the increase in Ri for every case where τj
may preempt τi: the time cost of Saving Sspm

j blocks and then
Restoring them before returning to τi.
γSRPD
i,j has no dependence on i. SRPD is independent of

other tasks. The parameter i is included so that γSRPD
i,j can be

substituted into (2) as follows, giving the equation for SRPD-
RTA:

RSRPD
i = B

spm
i + CSto + Csave

i + C
spm
i +∑

j∈hp(i)

⌈
RSRPD
i

Tj

⌉
(CSto + C

spm
j + CSfrom + γSRPD

i,j )
(9)

where
B

spm
i = max(Bi, C

restore
i + CSfrom) (10)

We return to the contribution to Bi from lower priority tasks
in Section III-D.

C. Regions

It is important to minimize (8), which means minimizing
S

spm
i , the total number of SPM blocks used by task τi.

The techniques required are common to all SPM allocation
algorithms, because these involve mapping a program of size
s into a memory of size k, where s > k [3], [5].

The basic approach is to form regions to multiplex the
SPM usage of τi so that multiple parts of τi reuse the same
SPM space [5], reducing the total number of physical blocks
required by τi. The same total number of blocks must still
be loaded from external memory, as the combined size of all
regions is the same as the task size. However, the storage space
required for those blocks is only the size of the largest region,
which is smaller than the size of the task.

The sizes of the m regions used by τi are
S

spm
i,1 , S

spm
i,2 , ..., S

spm
i,m , and the loading cost for region x

is C load
i,x . The largest region size is Sspm

i :

S
spm
i = max

x∈[1,m]
S

spm
i,x (11)

The region-forming model used in this paper assumes that
τi is a linear sequence of regions, i.e. region x + 1 always
follows region x. For example, the parts of the task dedicated
to initializing and completing some work may be placed in
different regions to the main part of the task which actually
carries out the work. The initialization and completion code
is only executed once and can be discarded after use. More
complex approaches to SPM allocation are possible, but the
simple approach is effective when Sspm

i is no larger than the
available SPM space. The region formation process adds a
small amount of additional code to each region x < m in
order to trigger the Load for region x+ 1.

D. Blocking Time

Bcache
i and Bspm

i include the maximum amount of time τi
may be forced to wait for a shared resource in use by a lower-
priority task. In this paper, we assume tasks are independent,
so blocking is due only to OS critical sections (CSto, CSfrom)
and MSRS steps Save, Load and Restore. Cache is only
affected by the OS:

Bcache
i = max

(
CSto, CSfrom

)
(12)

For MSRS, blocking is caused by Save, Load and Restore
steps carried out by lower-priority tasks k ∈ lp(i):

B
lp
i = max

k∈lp(i)
(CSto + Csave

k + C load
k,1 ,

max
x∈[2,m]

C load
k,x , C

restore
k + CSfrom)

(13)

This fits into (10) as follows:

B
spm
i = max(B

lp
i , C

restore
i + CSfrom) (14)



System Parameter Upper Bound Value
Clock Period 10 ns
Block Size 16 bytes
Local Memory Size 128 blocks
BRTcache 310 ns
CSto 9090 ns
CSfrom 5500 ns
Bcache 9090 ns
Csave

i 10S
spm
i + 480 ns

BRTspm 320 ns
Cload

i,j BRTspmS
spm
i,j + 150 ns

Crestore
i BRTspmS

spm
i + 570 ns

TABLE I
SYSTEM PARAMETERS OBTAINED FROM FPGA IMPLEMENTATION.

E. Discussion

The definitions given above make Bspm
i larger than Bcache

i ,
as existing critical sections (CSto, CSfrom) are extended.
Furthermore, Cspm

i is typically similar to Ccache
i .

C
spm
i is only less than Ccache

i in special cases, e.g. if fewer
blocks are loaded from external memory for SPM than cache
because SPM allocation is able to pack the same code into
fewer blocks by defragmenting, or because conflict misses
occur for cache [20]. However, our benchmarks are chosen so
that conflict misses do not occur (Section I), and the impact
of defragmentation is unimportant within the tasks we used,
only affecting the small minmax benchmark. Cspm

i may also
be smaller than Ccache

i due to differences in block size or
pipelining of transfers to SPM [10], but in this paper, we
choose the same block size for both cache and SPM, and
assume that SPM transfers are not pipelined.

Therefore, the success of MSRS depends entirely upon
achieving some γSRPD

i,j that is smaller than both γucbu
i,j and

γecbu
i,j . Put simply, the additional overhead of Save and Restore

must be less than the overhead of CRPD. However, it is not
possible to make such a comparison without considering the
properties of task sets.

IV. MSRS IMPLEMENTATION

In this section, we determine equations for parameters such
as BRTcache and Csave

i from a working system implementation,
and then describe the task sets used for our experiments.

A. System Parameters

Table I shows the parameters of the hardware and system
software, some of which are dependent on task sizes (Sspm

j )
and region sizes (Sspm

i,j ). We introduce BRTspm as the time
needed to load a single SPM block from external memory;
notice that this is not part of Csave

i because only the address
of each block needs to be Saved.

The parameters are based on the following hardware and
system software components:

ARM7 CPU. We assume a timing-compositional architec-
ture [19] which requires adopting a CPU that is free of timing
anomalies. One of the best-known CPUs of this sort is the
ARM7 CPU core which is supported by the Absint aiT WCET

analysis tool [23]. The model of ARM7 used by aiT has
configurable caches: the total size, block size and miss latency
of each cache can be specified. Furthermore, aiT can be used
to capture the ECBi and UCBi sets for each τi [15].

FPGA-based SPM. ARM7 does not include SPM. This is
an issue because MSRS involves loading information from
external memory to SPM. Without some model of this process,
we have no way to find the relevant parameters. Therefore, we
created an FPGA implementation of the system that included
an SPM and hardware to load data into the SPM (Figure 2).

This FPGA implementation is not based on an ARM7 CPU,
since ARM7 is not available to us in synthesizable form.
Instead we use the similar Microblaze CPU, reasoning that
the differences between Microblaze and ARM do not affect the
performance of surrounding hardware such as external mem-
ory, cache and SPM. The same cache/SPM implementation
can be used for both. The FPGA implementation allows us to
capture the parameters of Microblaze+SPM by measurement;
we then assume that these would be the same for a possible
ARM7+SPM implementation if one existed.

Details of the FPGA implementation cannot be included
in this paper due to space limitations; however, the design is
downloadable from our web page1. Our measurements were
performed using a Xilinx ML505 FPGA board, featuring a
Virtex 5 LXT FPGA and external RAM, but the design uses
a standard memory controller and CPU components and is
adaptable to other recent Xilinx FPGA devices.

External RAM. We use a 256Mb SO-DIMM DDR2 module
manufactured by Micron. The memory controller implements a
periodic refresh as required for DDR2. This is activated every
7800ns. During the refresh, memory accesses are blocked for a
few clock cycles. Our measurements were all captured between
refreshes, on the grounds that there are more appropriate
ways to deal with refreshes in a real-time context which
are orthogonal to MSRS [24]. WCET, SRPD and CRPD
analysis are not the right places to consider the possible impact
of refreshes, which should be handled at the system level.
Therefore, refreshes are not given further consideration in this
paper - it is assumed throughout that the memory controller
is always ready to respond to requests.

Real-time Operating System. Some parameters are a conse-
quence of both the hardware and the operating system soft-
ware; the context-switching time is an example. We adapted
Carousel OS [10] to run on the FPGA hardware. The OS
is resident in a system SPM (Figure 2). It is configurable
at compile time to use either instruction cache or instruction
SPM, which makes no difference to the scheduler or the device
drivers, but changes how new tasks are invoked. For SPM, an
implementation of MSRS is used, comprising the four steps
Save, Load, Execute, Restore (Section III-A). For cache, only
Execute is used.

B. Software Tasks
We used the same tasks as [16] as listed in Table II, exclud-

ing tasks that are larger than the local memory (i.e. |ECBi| >
1http://www.cs.york.ac.uk/rts/rtslab/
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Fig. 2. Microblaze+SPM hardware implemented within an FPGA.

Task τi Cexecute
i (ns) |ECBi| Ccache

i (ns) |UCBi|
binarysearch 2980 18 8560 13
bsort100 11074380 32 11084300 18
crc 2117220 73 2139850 61
fac 10460 13 14490 11
fibcall 13470 13 17500 7
fir 213630 55 230680 41
insertsort 61980 21 68490 11
matmult 8056310 52 8072430 20
minmax 2790 36 13950 12
ns 365910 33 376140 29
qsortexam 165440 87 192410 81
select 133750 77 157620 72

TABLE II
BASE TASKS FROM THE MRTC BENCHMARK COLLECTION [25].

128) in order to avoid conflict misses. Both cache and MSRS
can be used with larger benchmarks [16], [10], but excluding
conflict misses simplifies comparisons between MSRS and
cache by (i) removing the effects that penalize cache (but not
SPM) and are not related to preemption, and (ii) allowing the
use of a simple region formation scheme for SPM.

The tasks are from the well-known MRTC benchmark
collection [25]. The columns of Table II are:

1) Task τi name,
2) Cexecute

i , determined by WCET analysis using aiT, with
no instruction cache or data cache, so all memory
accesses are zero-latency. An ARM7 CPU model [26]
is assumed.

3) Ccache
i determined by:

Ccache
i = BRTcache|ECBi|+ Cexecute

i (15)

Notice that (15) and (7) are very similar; the cache miss
time BRTcache|ECBi| is substituted for C load

i .
4) |ECBi|, the number of distinct cache blocks which might

be used by the task as it executes [12], determined during
WCET analysis.

5) |UCBi|, the maximum number of definitely-cached useful
cache blocks (DC-UCBs) in the task. DC-UCBs are
cached blocks that are reused during execution [15].

C. Software Task Sets

The task set {τ1, τ2, ..., τn} is chosen at random from Table
II, i.e. each τi has an equal probability of having the properties
of any one of the rows of Table II.

We assign a utilization Ui to each task τi in order to match
a total utilization U =

∑
i Ui. This assignment is performed

using the UUnifast algorithm [27]. As WCETs are already
defined, utilizations are assigned by setting Ti = 1

Ui
Ccache
i .

We assume that deadline is equal to period for all tasks
(Di = Ti) and use deadline monotonic priority assignment,
so that tasks with shorter deadlines always have higher pri-
orities. Deadline monotonic priority assignment is optimal if
preemption and context switch costs are negligible.

Like [16], we pick a random starting point within the cache.
The ECB set for task τ1 begins at this point and occupies
|ECB1| contiguous blocks. The ECB sets for subsequent tasks
are arranged consecutively, i.e. ECBi+1 begins immediately
after ECBi. The UCB sets are generated as subsets of the ECB
sets, and again from [16], we choose a random starting point
within ECBi for each task τi. The UCB set for task τi begins
at this point, and occupies |UCBi| contiguous blocks.

This completes the model of each task, and there is enough
information to determine if the task set is schedulable if
executed with cache. We use (6) for the schedulability test,
i.e. the task set is schedulable if ∀i.RCRPD

i ≤ Di.
By generating many task sets with a specific utilization

U , and checking for schedulability, we can find the success
ratio: the proportion of task sets that are schedulable at that
utilization, and thus compare MSRS and cache.

D. Good Conditions, Poor Conditions

Figure 1 illustrates the comparison approach used in this
section. The same task sets are analyzed with both cache and
MSRS as a way to compare their schedulability.

When combined with task set parameters such as Ti, Table
II gives all the necessary information for schedulability analy-
sis with CRPD-RTA. However, as Sspm

i is absent, there is not
enough information for analysis with SRPD-RTA. Substituting
parameters from Table I into (8) leaves Sspm

i as an unknown:

γSRPD
i,j = Csave

j + Crestore
j

= 330S
spm
j + 1050

(16)

The largest likely S
spm
i = |ECBi|. This occurs when there is

only one region. The smallest likely S
spm
i = |UCBi| because

regions are typically formed where code is reused, so that
regions typically contain an entire loop, and are thus the
same size as |UCBi|. These observations give upper and lower
bounds on γSRPD

i,j . Similar substitutions into (14) can be made
to determine Bspm

i :

B
spm
i = max( max

k∈lp(i)
(330S

spm
k + 9720),

320S
spm
i + 6070)

(17)

The total number of blocks loaded is |ECBi|, assuming that the
code size is unchanged by region formation, so Cspm

i is:

C
spm
i = 320|ECBi|+ 150 + Cexecute

i (18)

To carry out a comparison, we tested task sets with combined
utilization U ∈ [0, 1]. For each value of U , 100000 task sets
were generated, each containing exactly n = 15 tasks. Each
task was selected at random from Table II.
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Fig. 3. The proportion of task sets of size n = 15 with utilization
U ∈ [0.4, 0.9] that are schedulable using cache with CRPD-RTA analysis,
compared with MSRS in “good” conditions (Sspm

i = |UCBi|) and MSRS in
“poor” conditions (Sspm

i = |ECBi|), each with SRPD-RTA analysis.

The task sets were tested in three scenarios: (i) cache, (ii)
MSRS in “good” conditions (where S

spm
i = |UCBi|), and

(iii) MSRS in “poor” conditions (where Sspm
i = |ECBi|) For

scenarios (ii) and (iii), γSRPD
i,j is defined by (16), Bspm

i is
defined by (17) and Cspm

i is defined by (18).
Figure 3 shows the results. Cache is clearly preferable to

MSRS in “poor” conditions; far more task sets are schedulable
with cache. However, in “good” conditions, MSRS and cache
allow a similar number of task sets to be scheduled.

Figure 4 shows an alternative view of Figure 3, comparing
MSRS in “good” conditions to cache. This plot shows the
number of task sets that were deemed schedulable by CRPD-
RTA but not SRPD-RTA (“Cache only”) and the number
that were deemed schedulable by SRPD-RTA but not CRPD-
RTA (“MSRS only”). This tells us that while MSRS and
cache allow a similar number of task sets to be scheduled
(Figure 3), there are important differences between the two
approaches. As the MSRS only curve shows, some task sets
are only schedulable with MSRS. A smaller number are only
schedulable with cache. Therefore, SRPD and CRPD are
incomparable in that neither dominates the other across all
possible task sets. We explore this difference in section V.

E. Realistic Conditions

We now look at what happens when S
spm
i and C

spm
i are

given realistic values from our hardware implementation. This
requires splitting each task into two or more regions; if we
retain only one region, we have Sspm

i = |ECBi|, and results
are poor (Figure 3).

Splitting tasks into regions for SPM allocation is a whole
topic in itself [5]. In this paper, we choose a simple scheme
which is effective for small tasks.

Consider the binarysearch benchmark. This has the follow-
ing structure when compiled for ARM and executed:

1) Run initialization code (68 bytes),
2) Run binary search loop (208 bytes),
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Fig. 4. The proportion of task sets from Figure 3 that were deemed
schedulable by CRPD-RTA but not SRPD-RTA (“Cache only’) and the number
that were deemed schedulable by SRPD-RTA but not CRPD-RTA (“MSRS
only (good)”).

3) Run completion code, return (12 bytes).
Only the looped code is ever reused, and hence |UCBi| =
d 20816 e = 13 blocks. However, all of the code is executed at
least once, so |ECBi| = d 68+208+12

16 e = 18 blocks. If region
boundaries are placed at each transition between sequential
code and a loop, then each of the three parts becomes a
separate region. The space used for the loop code can be
shared with the space used for initialization, so the program
is executed as follows:

1) Load initialization code (68 bytes plus 16 bytes to load
next region; d 68+16

16 e = 6 blocks),
2) Run initialization code,
3) Load binary search loop into SPM (208 bytes plus 16

bytes to load next region; d 208+16
16 e = 14 blocks),

4) Run binary search loop,
5) Load completion code into SPM (12 bytes, 1 block),
6) Run completion code and return.

If τi = binarysearch, then S
spm
i,1 = 6, Sspm

i,2 = 14, Sspm
i,3 = 1,

and from (11), Sspm
i = max{6, 14, 1} = 14.

The loading costs for these regions are C load
i,1 = 2070,

C load
i,2 = 4630, C load

i,3 = 470. Substituting these into (7) with
Cexecute
i from Table II gives C

spm
i = 10150ns.

F. Region Formation
Our experimental software (downloadable; see footnote 1)

applies the process described for binarysearch to divide the
other tasks in Table II into multiple regions. In each case,
the software forms a linear sequence of m regions where
region x+ 1 always follows region x. In most cases, m = 3:
the regions being initialization, execution, and completion. In
some cases, more regions are possible, e.g. matmult has five
regions because the initialization phase involves a loop, and
hence some blocks are reused.

All tasks in Table II form at least m = 3 regions; some
(bsort100, matmult, sqrt) form m = 5 regions. The region for-
mation process is further optimized by merging adjacent pairs
of regions whenever this does not increase Sspm

i , reducing m.



Task τi C
spm
i (ns) S

spm
i

C
spm
i

Ccache
i

S
spm
i

|ECBi|
S

spm
i

|UCBi|

binarysearch 10150 14 1.186 0.778 1.077
bsort100 11085710 19 1.000 0.594 1.056
crc 2141990 61 1.001 0.836 1.000
fac 15710 10 1.084 0.769 0.909
fibcall 18720 6 1.070 0.462 0.857
fir 232320 41 1.007 0.745 1.000
insertsort 69790 11 1.019 0.524 1.000
matmult 8074660 21 1.000 0.404 1.050
minmax 11240 11 0.806 0.306 0.917
ns 377090 29 1.003 0.879 1.000
qsortexam 194370 82 1.010 0.943 1.012
select 160120 72 1.016 0.935 1.000

TABLE III
TASKS AFTER REGION FORMATION FOR SPM.

This simple region formation process is inevitably restricted
because it does not allow regions to exist as proper subsets of
loops, and it does not allow a conditional statement to choose
between more than one region. Better region assignments may
exist. Finding high-quality or optimal SPM allocations for
tasks is the subject of ongoing work.

G. Software Tasks for SPM

Region formation gives each task the parameters shown in
Table III. The columns of Table III are:

1) Task name (as in Table II).
2) C

spm
i , determined using (7).

3) S
spm
i , determined using (11).

4) The ratio C
spm
i

Ccache
i

, showing the difference in WCET from

SPM to cache. The WCET for SPM is typically larger
because the overheads in (7) are greater than (15).

5) The ratio S
spm
i

|ECBi| , showing the difference in the local
memory requirement for each task. We see that forming
regions has greatly reduced the space requirement.

6) The ratio S
spm
i

|UCBi| , showing that SPM allocation has got
close to (and sometimes exceeded) the “good” condition
of Figure 3.

Figure 5 shows a comparison of cache and MSRS in realistic
conditions. The graph is a copy of Figure 3 with new data
added for SRPD-RTA (real) generated using the real task set
parameters in Tables II and III. Again, 100000 task sets of size
n = 15 were tested at each U . The difference between SRPD-
RTA (good) and SRPD-RTA (real) is almost indistinguishable,
though there are differences: for instance, in Table III, Sspm

i

is sometimes larger than |UCBi|.

V. INVESTIGATION

This paper has shown that in practical implementations,
MSRS and cache can have very similar performance. Nev-
ertheless, there are differences. The goal of this section is to
explain the causes of these differences.

In order to do this, we use the comparison approach
illustrated in Figure 1. We begin with a baseline comparison
of SRPD-RTA and CRPD-RTA. Section IV-D’s “good condi-
tions” turned out to be similar to realistic conditions (Figures 3
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Fig. 5. The proportion of task sets of size n = 15 with utilization
U ∈ [0.4, 0.9] that are schedulable using MSRS in “good”, “real” and
“poor” conditions with SRPD-RTA analysis, and using cache with CRPD-
RTA analysis. The graph shows that SRPD-RTA (good) is very similar to
SRPD-RTA (real).

and 5), so we use Figure 3 as the baseline with Sspm
i = |UCBi|.

γSRPD
i,j , Bspm

i and Cspm
i are defined by (16), (17) and (18).

A. Number of Tasks

The success of MSRS is highly dependent on the number
of tasks n. The difference between CRPD-RTA and SRPD-
RTA for different n may be illustrated using a weighted
schedulability measure Wy(p) [28]. The measure combines
data for all task sets generated with a particular parameter set
p and tested with a particular schedulability test y into a single
value, namely a weighted integration of the area under the
curve in a graph such as Figure 3. The value Wy(p) can then be
plotted on a graph for various p. The weighted schedulability
measure is defined as follows:

Wy(p) =

∑
τ u(τ)Sy(τ, p)∑

τ u(τ)
(19)

where u(τ) is the utilization of task set τ and Sy(τ, p)
is 1 if task set τ is schedulable according to test y and
parameter set p, otherwise 0. In Figure 3, WCRPD-RTA = 0.395
and WSRPD-RTA = 0.404 in “good” conditions. In realistic
conditions (Section IV-G), WSRPD-RTA = 0.403.

Let p be the number of tasks, n. Figure 6 shows what
happens when we vary n from 1 to 30, picking each task
at random from Table II, and using idealized parameters as
for Figure 3. (The baseline is n = 15 and 10000 task sets
were generated for each U .)

The weighted schedulability measure is the same for a
single task, because of the idealized assumptions. For small
numbers of tasks, cache is preferable: WCRPD-RTA(n) >
WSRPD-RTA(n). But for larger numbers of tasks (n > 10),
SPM is advantageous. We explain why this is in Section V-F.

B. Load time ratio

In our implementation, the cost of loading a block from
SPM is BRTspm = 320ns; the cost of loading a block from
cache is BRTcache = 310ns (Table I). The difference is the need
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to explicitly order the transfer, which requires the execution
of an additional instruction. For this comparison, we define
BRTspm = xBRTcache. The baseline x = 1.03.
x < 1 is possible if the block size for SPM is larger than the

block size for cache, because larger blocks can be transferred
more efficiently across a bus. Therefore, we explore the range
x ∈ [0.7, 1.3].

Figure 7 shows the result, assuming n = 15 tasks. It is clear
that schedulability is very sensitive to BRTspm and BRTcache.

If x = 1 so BRTspm = BRTcache, WSRPD-RTA = 0.409,
which is much better than the WCRPD-RTA equivalent (0.395).
However, with x = 1.03, we have WSRPD-RTA = 0.404: a very
small increase in x has greatly reduced schedulability. x = 1.1
would result in WSRPD-RTA = 0.394, worse than WCRPD-RTA.

BRTspm affects both γSRPD
i,j and Cspm

i , so it is unsurprising
that its impact is so severe. Minimizing this cost is important.

C. Sspm, |ECB| ratio

Figure 8 shows the effect of changing the relationship
between S

spm
i , |UCBi| and |ECBi|. On the x-axis, a value of

x = 0 corresponds to S
spm
i = |UCBi|, and a value of x = 1
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corresponds to Sspm
i = |ECBi|, i.e.

S
spm
i = |UCBi|+ (|ECBi| − |UCBi|)x (20)

Figure 8 indicates that the success of MSRS depends on
the ability of the SPM-based technology to reduce the local
memory footprint of each task. Sspm

i must be less than |ECBi|
if MSRS is to improve on cache.

D. Local Memory Size

Figure 9 shows the effect of changing the local memory
size. For this graph, the local memory size is calculated as
2x, where x is the value on the X axis. For instance, x = 7
corresponds to 128 blocks, which is the baseline local memory
size (Table I).

Because we have set out to ignore the effects of conflict
misses, this experiment involves ignoring the tasks in Table
II that require more than 2x blocks (i.e. where |ECBi| > 2x).
Therefore, the generated task sets for x < 7 are different to
those for all other x. Furthermore, we are unable to test x < 5,
because our benchmark tasks are too large (25 = 32 blocks).

We see that MSRS is preferable to cache when the local
memory size is small. Additionally, the performance of MSRS
is independent of the local memory size (in Figure 9, the
performance of MSRS only varies when the set of valid tasks
changes). Whereas the performance of cache is dependent
upon the local memory size, up to the point where the
cache is large enough that the ECB sets are disjoint and
no task evicts blocks belonging to another. There is also a
size (approximately 28 = 256 blocks) where cache becomes
preferable because the impact of CRPD has become less than
the impact of SRPD.

E. The Impact of Blocking

Earlier comparisons use the baseline definitions of Bspm
i

(17) and Bcache
i (12). With these definitions, Bspm

i > Bcache
i .

The critical sections invoked as tasks begin and end have
greater WCETs for MSRS.

Another implementation might make Save, Load and Re-
store interruptible, almost reducing B

spm
i to Bcache

i . Tasks
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would still be able to block themselves, so the minimum B
spm
i

is similar to (12):

B
spm
i = max

(
CSto, Crestore

i + CSfrom
)

(21)

The effect of substituting (21) for (17) is a negligible in-
crease in the number of task sets schedulable with MSRS:
WSRPD-RTA improves from 0.4035 to 0.4038. This is much less
than the significance of reducing BRTspm or Sspm. Therefore,
if we are forced to choose between reducing blocking and
reducing BRTspm while reimplementing MSRS, we should
certainly choose the latter.

F. General Observations

Figures 6 and 9 illustrate essentially the same behavior,
namely the effect of contention for local memory space, which
affects cache and MSRS in different ways. Tasks are more
likely to evict blocks belonging to other tasks when the task
set size is increased (Figure 6) and when the local memory
size is reduced (Figure 9).

Increasing the task set size means that γucbu
i,j and γecbu

i,j

(see (4) and (5)) become closer to BRTcache|ECBj |, their upper
bound. This is because more tasks means there are more ways
that a low-priority task τi could be preempted by some high-
priority task τj ; not just directly, but also indirectly during
preemption by some other task τk where k ∈ aff(i, j). In other
words, CRPD tends towards the assumption that all of task τi
is evicted from cache by preemption. SRPD does not do this;
γSRPD
i,j is dependent only on the properties of task τj and not

on the set of preempted tasks (8).
Similarly, reducing the local memory size causes γucbu

i,j and
γecbu
i,j to become closer to BRTcache|ECBj | because fewer blocks

are available in cache, and hence ECBj and UCBj grow closer.
There is a tradeoff between the number of tasks and the

local memory size. Large numbers of tasks may be schedulable
with cache given sufficient local memory. If the local memory
size is insufficient for the number of tasks, MSRS may be
preferable, because it is unaffected by the number of tasks.

The phenomenon observed here is partly due to the im-
precision and overestimation of CRPD-RTA analysis, which
increases with the number of tasks.

Figure 7 illustrates a related effect. It may be that γSRPD
i,j

is smaller than γucbu
i,j and γecbu

i,j if BRTspm = BRTcache, this
improvement will be lost if BRTspm > BRTcache. It is therefore
crucial that BRTspm is as close to BRTcache as possible. Unfor-
tunately, even a small overhead (320ns versus 310ns) has a
significant impact. Improved implementations of MSRS could
address this.

It is already noted that Figure 8 shows the importance of
minimizing S

spm
i , because the success of MSRS depends on

this. However, Figure 8 also provides a clue about how to
improve the schedulability using cache. If tasks using cache
can be arranged such that UCBi = ECBi, the task set will
approach the schedulability available from MSRS. This could
be achieved through a region-forming process (Section IV-F).

VI. RELATED WORK

Schedulability comparisons are a common way to evaluate
analyses for real-time systems [27] and earlier work on CRPD
also made use of them [15], [16]. Generated task sets may
be entirely synthetic, but for this paper we require realistic
information about the relationship between parameters such
as Sspm

i and |UCBi|, so it is essential to base the task sets on
real tasks taken from benchmark software [25]. We used the
same benchmarks as earlier work on MSRS [10] and earlier
work on CRPD [16].

SPM has been used within multitasking real-time systems in
previous work. MSRS may be regarded as an improvement of
earlier approaches to prevent one task evicting local memory
resources used by another, such as static cache locking [29]
and static SPM partitioning [9], [7]. Simpler forms of MSRS
have been proposed [30], [9], but the one used in this paper
has the important distinction of enabling any task to use an
arbitrary number of blocks in SPM independently of all other
tasks [10].

MSRS may only be used if task preemption is properly
nested. Tasks must preempt and complete in stack order,
so that the Save and Restore steps work correctly. This is
suitable for real-time systems that use the Stack Resource
Policy (SRP) [31] for resource access, but not for arrangements
where multiple tasks execute simultaneously, as observed with
precision-timed architecture (PRET) CPUs [7]. PRET uses a
time-predictable form of simultaneous multithreading (SMT)
in which all tasks may access SPM at the same time, requiring
static partitioning of SPM.

VII. CONCLUSION

In this paper, we have presented a multitasking scratchpad
reuse scheme (MSRS) for the dynamic partitioning of SPM
space between tasks. This is accompanied by the notion of
scratchpad-related preemption delay (SRPD) which, being an
analog of cache-related preemption delay (CRPD), indicates
the cost imposed upon a preempted task by preemption in a
multitasking system.



We have compared MSRS with its cache equivalent through
comparisons of SRPD and CRPD within both realistic and
idealistic experiments. The comparisons were carried out by
applying worst-case response time (WCRT) analysis with
SRPD and CRPD (Figure 1). We have shown that MSRS is
preferable to cache for certain task sets, in the sense that some
task sets that are not schedulable with cache are schedulable
with MSRS. A large task set with a small local memory is
more likely to be schedulable with MSRS. Unlike CRPD,
SRPD is independent of the number of tasks and the local
memory size.

Lastly, we have determined that it is very important to
minimize the overheads of using SPM, particularly the block
reload time BRTspm, which is larger than the cache equivalent
within our experimental system implementation. This moti-
vates improved hardware support for MSRS.

Future work may relax the simplifying assumptions made
for this paper by considering set-associative caches, data
caches and more complex tasks. If individual tasks are larger
than the local memory size, then the comparisons may become
more complex as conflict misses occur and advanced SPM
allocation techniques may be required to further subdivide
regions. These will increase Ccache

i and C
spm
i for each task,

and may reduce Sspm
i . Simulations could also be used to show

how much of the difference between cache and MSRS is
caused by imprecision in the analyses and how much is present
in a real system.
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