
Explicit Reservation of Local Memory
in a Predictable, Preemptive

Multitasking Real-time System
Jack Whitham and Neil Audsley

Real-Time Systems Group
Department of Computer Science

University of York, York, YO10 5DD, UK
jack@cs.york.ac.uk

Abstract—This paper proposes Carousel, a mechanism to
manage local memory space, i.e. cache or scratchpad memory
(SPM), such that inter-task interference is completely eliminated.
The cost of saving and restoring the local memory state across
context switches is explicitly handled by the preempting task,
rather than being imposed implicitly on preempted tasks. Unlike
earlier attempts to eliminate inter-task interference, Carousel
allows each task to use as much local memory space as it requires,
permitting the approach to scale to large numbers of tasks.

Carousel is experimentally evaluated using a simulator. We
demonstrate that preemption has no effect on task execution
times, and that the Carousel technique compares well to the
conventional approach to handling interference, where worst-case
interference costs are simply added to the worst-case execution
times (WCETs) of lower-priority tasks.

I. INTRODUCTION

A key issue for predictable preemptive multitasking system
implementations is bounding the cost of context switches. A
context switch occurs when one task stops executing and an-
other begins [1]. Simple real-time scheduling models assume
that context switching only imposes a small, fixed cost. In a
sufficiently simple system this is true, but when task execution
times are affected by the state of CPU components such as
caches, it is not [2]. Preemptive multitasking allows any task to
be interrupted by a higher-priority task during execution, and
when the original task resumes, stateful components including
cache will be in a different state. In this paper, we refer to
this phenomenon as inter-task interference. It may change
the execution times of preempted tasks. Figure 1 illustrates
a preemption resulting in some inter-task interference.

For the remainder of the paper, we concentrate exclusively
on local RAM as the stateful component. Local RAM can be
implemented as either cache or scratchpad memory (SPM) and
is high-speed, low-latency memory, physically located close to
the CPU (Figure 2). Other components such as branch predic-
tion units can cause similar inter-task interference effects [3],
[4], but these are outside the scope of this paper.

Three possible solutions can be used to deal with inter-task
interference. Firstly, we can statically partition the stateful
components so that each task gets a small, reserved portion of
the local RAM (Figure 3). Cache partitioning is an example [5]

which eliminates inter-task interference by locking cache lines
used by other tasks. Secondly, we can explicitly save and
restore the component state when tasks begin and end. This
is the approach used for the CPU register file. Finally, we can
ignore the component state at runtime and instead statically
bound the worst-case effects of inter-task interference, which
is possible for caches under some circumstances [6]–[8].

These solutions can be compared by considering both their
limitations and their effect on the schedulability of the real-
time system as a whole. A real-time system is schedulable if
every task is guaranteed to meet its deadline [1]. Schedulability
analysis is used to check this property. It relies on task
properties such as their priorities and worst-case execution
times (WCETs): the maximum amount of CPU time required
to complete execution, determined by WCET analysis [9].

The static partitioning approach leads to larger WCETs and
hence schedulability is reduced. This is because each task has
an optimal memory requirement [10]. If this is not available
within its partition, the WCET is increased. Partitioning is
therefore an impractical approach for large numbers of tasks,
because the local RAM space is not shared efficiently.

The bounding approach is necessarily pessimistic as it is
not generally possible to know exactly which cache blocks
will be evicted or needed again. The supersets of useful and/or
evicted cache blocks can be computed for tasks [6] as a safe
but inexact upper bound. Again, this leads to larger WCETs, or
at least, larger WCET estimates: because while the WCET may
not be increased in reality, the safe upper bound determined by
analysis certainly is. Hence, schedulability is reduced. Bound-
ing is also only suitable for timing-compositional systems in
which interference can be accounted by simple addition [4],
and it is only suitable for cache, not SPM.

The explicit save/restore approach can also reduce schedu-
lability, because additional time is required for saving and
restoring the local RAM state. If this activity is performed
within the context switch (i.e. along with saving and restoring
the CPU register values) then the schedulability analysis will
consider it a global, static cost applying to every context
switch. This would be undesirable because of the size of
local RAM, with a typical minimum of several kilobytes.

Task 1

Task 2

Task 1

P
rio

rit
y

Time

Task 1
start

Task 2
start

Task 1 resumes

Context switch

Task 1

Task 2

Task 1

P
rio

rit
y

Time

Space reserved
by Task 2

Space restored
by Task 2

swap_out
p blocks

Task 2

Task 1

P
rio

rit
y

Time

Step 1: save registers
(context switch)

Task 1

Step 2: swap_out

Step 3,5: update T

swap_in
p blocks

Step 4: run new task Step 6: swap_in

Step 7: restore registers
(context switch)

Interference from global
state changed by Task 2

Fig. 1. The impact of inter-task interference. The execution time of Task 1
is increased because Task 2 preempted it and changed the state of the cache.

Schedulability would be dramatically reduced by incorporating
such a large cost.

However, if the save/restore process is explicit, it can be
carried out within a task. Figure 4 illustrates this: by the time
Task 1 resumes, Task 2 has restored the local RAM state.

Carousel, proposed in this paper, is based on the principle
that each task should pay the reservation cost of any local
RAM that it wishes to use. This is the cost of saving the
local RAM state (the first step carried out by any task) and
the cost of restoring it (the last step). Carousel is a practical
implementation of the explicit save/restore approach.

With Carousel, the inter-task interference is zero, much
like a partitioning approach. But Carousel allows each task
to use as much (or as little) local RAM space as it wants. The
reservation cost is internalized as part of the WCET of the task
that actually uses the memory, rather than being treated as an
externality affecting the WCET of other tasks, as in bounding
approaches.

Carousel is useful for any priority-based real-time schedul-
ing paradigm in which task execution is strictly nested,
i.e. once a task starts to execute, no task of lower priority can
run until the higher priority task completes its execution. In
particular, it may be used with Baker’s stack resource protocol
(SRP) [11], and for the stack-based function call protocol used
by the C language. This is because the SRP ensures that a
task is never blocked after it commences execution (unlike
the priority ceiling protocol [12]). This property means that
all tasks can share a common stack. The SRP can be used
with fixed-priority and earliest deadline first (EDF) schedulers.
Furthermore, Carousel blocks can be used as cache or SPM,
which may be useful in mixed-criticality systems mixing hard
real-time and non real-time tasks.

After presenting related work in section II, this paper gives a
problem analysis (section III) leading to the Carousel hardware
and software (section IV). A suitable schedulability analysis
technique is given (section V) followed by some experiments
(section VI) which demonstrate that task execution times are
completely unaffected by preemption. Section VII describes
some possible improvements, and section VIII concludes.

II. RELATED WORK

Inter-task interference may occur whenever tasks share a
stateful resource such as a cache [13] (e.g. Figure 1).

The problem of intra-task interference due to cache state
is now quite well-known and has been studied thoroughly.
Cache WCET analyses model the state of a cache at each
point within a task in order to estimate the worst-case miss

C
P

U

Space for Task 1

Space for Task 2

Space for Task 3

Space for Task 4

LOCKED

ACTIVE

LOCKED

LOCKED

C
P

U

Space for Task 2

Space for Task 3

Space for Task 4

LOCKED

ACTIVE

Space for Task 5

Space for Task 6

LOCKED

SWAPPED OUT

SWAPPED OUT

SWAPPED OUT

T

T-p

T-n

0

Local R
A

M
Local R

A
M

E
xternal
R

A
M

swap_out
p blocks

Task
i
 method

Time

call_method(A
i
, y, z)

swap_in
p blocks

CPU A Ahi

ASPM SPM (1)

Data bus

+

Alo

External RAM

Translation
Unit (2)

Registers
r

0
 to r

n-1
 (3)

open
y code blocks

open
z stack blocks

close
y+z blocks

C
P

U

Local RAM
(cache/SPM)

E
xterna l R

A
M

Fig. 2. Local RAM in relation to the CPU and external RAM. Local RAM
may be implemented as a cache or SPM.

C
P

U

Space for Task 1

Space for Task 2

Space for Task 3

Space for Task 4

LOCKED

ACTIVE

LOCKED

LOCKED

C
P

U

Space for Task 2

Space for Task 3

Space for Task 4

LOCKED

ACTIVE

Space for Task 5

Space for Task 6

LOCKED

SWAPPED OUT

SWAPPED OUT

SWAPPED OUT

T

T-p

T-n

0

Local R
A

M
Local R

A
M

E
xternal
R

A
M

swap_out
p blocks

Task
i
 method

Time

call_method(A
i
, y, z)

swap_in
p blocks

CPU A Ahi

ASPM SPM (1)

Data bus

+

Alo

External RAM

Translation
Unit (2)

Registers
r

0
 to r

n-1
 (3)

open
y code blocks

open
z stack blocks

close
y+z blocks

C
P

U

Local RAM
(cache/SPM)

E
xterna l R

A
M

Fig. 3. Local RAM partitioning. Each task gets a small, fixed slice of the
local RAM. Other areas are inaccessible or read-only.

count, and hence the maximum execution time [4], [9], [14].
Each cache state is dependent on earlier cache states. Earlier
task activity may result in subsequent activity producing either
a hit or a miss. This dependence is a form of interference, but
intra-task interference, since it occurs between one part of a
task and another.

Inter-task interference has also been examined [5], [13].
This occurs between two or more tasks in a multitasking
system. When two or more tasks share a cache, activity in
one task can disturb data used by the other, producing hits or
misses at unpredictable times. Inter-task analysis is pessimistic
because the exact set of evicted and/or useful cache blocks of
tasks cannot usually be computed offline.

Earlier work has prevented inter-task interference entirely
by static partitioning: reserving local RAM space for each
task [5], [15]. Each task is only permitted to update its own
partition (Figure 3). The remainder is locked [13]. While the
size of the partitions can vary between tasks, and non real-
time tasks can share a single partition, the assignment is static.
Tasks cannot use more than their fixed share of local RAM,
not even temporarily. This is a problem, because tasks may
have a suboptimal local RAM allocation [10]. This situation
becomes a near-certainty as the number of tasks increases.

Task 1

Task 2

Task 1

P
rio

rit
y

Time

Task 1
start

Task 2
start

Task 1 resumes

Context switch

Task 1

Task 2

Task 1

P
rio

rit
y

Time

Space reserved
by Task 2

Space restored
by Task 2

swap_out
p blocks

Task 2

Task 1

P
rio

rit
y

Time

Step 1: save registers
(context switch)

Task 1

Step 2: swap_out

Step 3,5: update T

swap_in
p blocks

Step 4: run new task Step 6: swap_in

Step 7: restore registers
(context switch)

Interference from global
state changed by Task 2

Fig. 4. Interference can be avoided by explicitly saving and restoring the
local RAM state as part of the new task. That way, a task only needs to save
and restore the parts of the local RAM that it actually needs to use.

Consequently, some researchers have suggested allowing
inter-task interference, but bounding its impact. A number
of approaches are evaluated in [6]. They are suitable for
timing-compositional systems where interference does not
cause any timing anomalies [4]. They incorporate the cost of
reloading evicted cache blocks into the worst-case response
time equation [7].

A third approach involves explicitly saving and restoring
the state of local RAM. This idea has been successfully
applied within tasks for SPM [16], [17]. It avoids intra-task
interference by ensuring that the state of local RAM is known
at each point within the task. But it is not trivial to expand
the idea to multitasking. The large size of local RAM (several
kilobytes or more) prevents saving and restoring the entire
state on each context switch.

III. PROBLEM ANALYSIS

Dynamic interference acts in the “wrong direction”, in that
the preempted task pays the additional cost due to interference
(Figure 1). In order to bound interference, we must assume the
worst-case number of preemptions, and also assume the worst
results from each preemption. Pessimism is essentially certain.

The other direction, where the preempting task pays the
additional cost, would be preferable (Figure 4). In this model,
the preempting task must save and restore the state of any
local RAM it wishes to use. The cost is incurred once per
preemption, the preempted task’s execution time is unaffected,
and pessimism is avoidable. In this way, inter-task interference
can be eliminated entirely while still allowing each task to use
any amount of local RAM.

This idea is simple, but its implementation is tricky. Firstly,
we are obliged to manage scheduling with a stack policy, so
that tasks start and complete in last-in first-out (LIFO) order.
If we use any other policy, we will need a way to resume
any task after any preemption. In that arrangement, when a
task τi completes, we cannot just restore the state of the local
RAM as it was before τi started, because this assumes that
the previous task and the next task are both τj . With a non-
LIFO task ordering, the next task may be τk 6= τj , requiring
a wholly different state to be restored, potentially of any size.
We absolutely require the swapping cost to be constant for
each task, so this will not do. Fortunately, scheduling policies
that assure the required LIFO ordering are already well-known
and in common use, having been described by Baker as the
stack resource protocol (SRP) as early as 1991 [11].

A second problem is apparent if tasks need to communicate
via shared memory, which is very likely in any practical
system. If one task may access memory updated by another,
then we have to ensure that both tasks have a coherent view of
that memory. We must ensure this even if one task is “swapped
out”, and if one or both tasks copy the relevant data into
local RAM. The issues are tricky, but they have already been
investigated during our earlier work on the scratchpad memory
management unit (SMMU) [18]. The SMMU gave a logical
address space to both local RAM and external RAM, so that
blocks could be swapped between the two without changing

C
P

U

Space for Task 1

Space for Task 2

Space for Task 3

Space for Task 4

LOCKED

ACTIVE

LOCKED

LOCKED

C
P

U

Space for Task 2

Space for Task 3

Space for Task 4

LOCKED

ACTIVE

Space for Task 5

Space for Task 6

LOCKED

SWAPPED OUT

SWAPPED OUT

SWAPPED OUT

T

T-p

T-n

0

Local R
A

M
Local R

A
M

E
xternal
R

A
M

swap_out
p blocks

Task
i
 method

Time

call_method(A
i
, y, z)

swap_in
p blocks

CPU A Ahi

ASPM SPM (1)

Data bus

+

Alo

External RAM

Translation
Unit (2)

Registers
r

0
 to r

n-1
 (3)

open
y code blocks

open
z stack blocks

close
y+z blocks

C
P

U

Local RAM
(cache/SPM)

E
xterna l R

A
M

Fig. 5. Carousel divides RAM space into blocks of size 2x bytes, organized
as a stack. The top n blocks are always resident in local RAM, and the top
p blocks (p ≤ n) are used by the current task.

their logical address. This proved an effective solution, dealing
with many edge cases related to pointer aliasing.

IV. CAROUSEL

We propose an extension to local RAM named Carousel.
With Carousel, inter-task interference is eliminated. But unlike
a partitioning approach, each task can use any amount of local
RAM.

In memory, Carousel acts as a stack (Figure 5). The stack
elements are blocks of fixed size 2x bytes. The top n blocks
are stored in local RAM. The remaining blocks are stored in
external RAM.

Starting a new task τi involves allocating pi blocks on
Carousel. These blocks are pushed onto the top of the stack,
reserving them for τi, while pi blocks are swapped out to
external RAM (Figure 6). As always, the top n blocks remain
in local RAM, and the remainder are in external RAM.

When a task ends, the process is reserved. pi blocks are
popped from the top of the stack, and pi blocks are swapped
in from external RAM (Figure 7). Again, the top n blocks
remain in local RAM.
pi is task-specific. Each task τi will have an optimal pi

that minimizes either the average execution time or the worst-
case execution time (WCET), noting that the time required to
reserve pi blocks (i.e. swap in and out) is incorporated into
the execution time.

A. Task Invocation Procedure

When a task τi is invoked on a Carousel-architecture ma-
chine, the following steps are taken by the real-time operating
system (RTOS) in order to execute τi (Figure 8):

1) Save registers used by previous task τj (context switch)
2) Swap out Carousel blocks T through (T + pi) mod n,

where T is the top of Carousel’s stack (Figure 5) and n
is the total number of blocks

3) Set T = (T + pi) mod n
4) Call task τi
5) Set T = (T − pi) mod n

Space for Task 2

Space for Task 3

Space for Task 4

ACTIVE

Space for Task 5

Space for Task 6

SWAPPED OUT

Space for Task 2

Space for Task 3

Space for Task 4

Space for Task 5

Space for Task 6

Space for Task 1

Local R
A

M
E

xternal
R

A
M

E
xternal R

A
M

Local R
A

M

 LOCKED

Space for Task 2

Space for Task 3

Space for Task 4

ACTIVE

Space for Task 5

Space for Task 6

SWAPPED OUT

Space for Task 3

Space for Task 4

Space for Task 6

Local R
A

M
E

xternal
R

A
M E
xternal
R

A
M

Local R
A

M

 LOCKED

Space for Task 5

swap_out

swap_in

Fig. 6. Starting a new task (Task 1) with Carousel involves reusing local
RAM blocks originally allocated by lower-priority tasks by swapping their
contents out to external RAM.

Space for Task 2

Space for Task 3

Space for Task 4

ACTIVE

Space for Task 5

Space for Task 6

SWAPPED OUT

Space for Task 2

Space for Task 3

Space for Task 4

Space for Task 5

Space for Task 6

Space for Task 1

Local R
A

M
E

xternal
R

A
M

E
xternal R

A
M

Local R
A

M

 LOCKED

Space for Task 2

Space for Task 3

Space for Task 4

ACTIVE

Space for Task 5

Space for Task 6

SWAPPED OUT

Space for Task 3

Space for Task 4

Space for Task 6

Local R
A

M
E

xternal
R

A
M E
xternal
R

A
M

Local R
A

M

 LOCKED

Space for Task 5

swap_out

swap_in

Fig. 7. Ending a task (Task 2) with Carousel involves restoring the contents
of local RAM blocks swapped out earlier (Figure 6).

6) Swap in Carousel blocks T to (T + pi) mod n
7) Restore registers used by τj (context switch)

The process is re-entrant: a further task τk can be started
during step 4. This may happen any number of times; τk may
also be preempted, or initiate subtasks (i.e. call methods).

B. Overhead of Carousel

As Carousel shifts the cost of reserving local RAM for task
τi onto task τi itself, the execution time of any task preempted
by τi is unaffected by that preemption. There is no inter-task
interference: the execution time of the lower-priority task is
the same regardless of how many times τi preempts it1.

The cost of reserving the local RAM is proportional to the
amount of space required. Steps 2 and 6 (Figure 8) operate
in O(pi) time, while steps 1, 3, 5, and 7 operate in O(1)

1Here, “execution time” is defined conventionally for real-time systems
theory as the CPU time used by one task [1]. By definition, τi’s execution time
explicitly excludes any time when any other task is running. The minimum
possible execution time for a task is its best-case execution time (BCET),
while the maximum possible execution time is its worst-case execution time
(WCET).

C
P

U

Space for Task 1

Space for Task 2

Space for Task 3

Space for Task 4

LOCKED

ACTIVE

LOCKED

LOCKED

C
P

U

Space for Task 2

Space for Task 3

Space for Task 4

LOCKED

ACTIVE

Space for Task 5

Space for Task 6

LOCKED

SWAPPED OUT

SWAPPED OUT

SWAPPED OUT

T

T-p

T-n

0

Local R
A

M
Local R

A
M

E
xternal
R

A
M

swap_out
p blocks

Task
i
 method

Time

call_method(A
i
, y, z)

swap_in
p blocks

CPU A Ahi

ASPM SPM (1)

Data bus

+

Alo

External RAM

Translation
Unit (2)

Registers
r

0
 to r

n-1
 (3)

open
y code blocks

open
z stack blocks

close
y+z blocks

C
P

U

Local RAM
(cache/SPM)

E
xterna l R

A
M

Fig. 9. Basic Carousel components: (1) an SPM, (2) a translation unit, and
(3) n memory mapped registers (one per block).

time. Therefore, the overhead of Carousel can be expressed
precisely as a linear expression of the form ap+ b.

By incorporating this cost into the execution of τi,
Carousel’s model differs from earlier approaches that con-
sidered interference as separate from the execution times of
tasks [6] or as part of preempted tasks [8]. It is also unlike
the approach of considering the whole local RAM as context,
which increases the cost of every context switch. Though a
Carousel task could use the entire local RAM, there is no
requirement to do so, and tasks can choose their memory usage
to minimize execution time. Lastly, it is unlike a partitioning
approach, which would avoid both interference and swap-
in/swap-out costs but prevent any task using more than a small,
statically reserved area of local RAM space [5], [15].

The reserved space for τi, 2xpi bytes, is typically larger
than the space that is actually required because of the need to
round up to the nearest multiple of blocks. Some SPM space is
therefore unused; some data is transferred unnecessarily. There
is a tradeoff between block size and system performance which
is not examined within this paper.

C. Hardware Design

In its most basic form, Carousel is implemented using three
components (Figure 9), which we describe for a generic 32-bit
CPU2. They are (1) an SPM of size 2xn (the local memory),
(2) n memory-mapped registers of width 32− x named r0 to
rn−1, and (3) a translation unit. The SPM is logically divided
into n blocks, each of size 2x bytes.

The translation unit receives addresses, A, from the CPU.
These are addresses for accessing code or data, produced in
the course of instruction fetches and load or store operations.
The addresses are split at bit x, so we have:

Ahi =
A

2x
Alo = A mod 2x (1)

Each Ahi is compared against all n registers in parallel. If
some ri = Ahi, then the memory access is a hit, and is
redirected to SPM. The new address is:

ASPM = Alo + 2xi+ S (2)

(Where S is the base address of the SPM.)

2Carousel is not a CPU-specific technology, but certain CPU designs
may themselves be a source of inter-task interference because of stateful
components such as branch predictors. [3] gives an overview of problematic
CPU designs.

Task 1

Task 2

Task 1

P
rio

rit
y

Time

Task 1
start

Task 2
start

Task 1 resumes

Context switch

Task 1

Task 2

Task 1

P
rio

rit
y

Time

Space reserved
by Task 2

Space restored
by Task 2

swap_out
p blocks

Task 2

Task 1
P

rio
rit

y

Time

Step 1: save registers
(context switch)

Task 1

Step 2: swap_out

Step 3,5: update T

swap_in
p blocks

Step 4: run new task Step 6: swap_in

Step 7: restore registers
(context switch)

Interference from global
state changed by Task 2

Fig. 8. The task invocation procedure for Carousel. Every task τi begins by swapping out pi blocks in order to reuse that space for its own code and data.
The blocks are swapped in before the task completes.

If ∀i.ri 6= Ahi, then the memory access is a miss, and it
passes to external RAM. This is slow, and uses more energy
than an SPM access, so tasks achieve better performance by
mapping code and data to SPM.

The purpose of the translation unit is to ensure that code and
data retains the same logical address A whether it is in SPM
or external memory. This simplifies software design [18].

Carousel allows software to access the SPM and r0 to rn−1
directly, as well as via the translation unit. This is used to
swap blocks in and out of local memory at the beginning and
end of each task. Tasks can also swap blocks during execution
if necessary.

D. Software Design

Carousel’s supporting software needs to be able to copy data
between SPM and external RAM. We define a dma copy(Ad,
As, s) method which copies s bytes from [As : As + s] to
[Ad : Ad + s].

The open(A, i) method assigns the data at address A to
block i. Two steps are required:

1) Set ri = A
2) dma copy(S + 2xi, A, 2x)

The close(i) method writes back the data in block i to its
associated external memory address ri.

1) dma copy(ri, S + 2xi, 2x)
2) Set ri = UNUSED

The swap out(p) method swaps out Carousel blocks T through
T + p− 1 so that they can be used by a new task (Figure 6).
It is necessary to store the values of rT through rT+p−1 so
that they can be restored later, so stack operations push and
pop are introduced:

1) Set j = 0
2) push(rj+T mod n)
3) close(j + T mod n)
4) Set j = j + 1
5) If j < p goto step 2

The swap in(p) method restores Carousel blocks to their
former positions, undoing an earlier swap out (Figure 7):

1) Set j = p
2) Set j = j − 1
3) open(pop(), j + T mod n)
4) If j > 0 goto step 2

System Cost
ARM PB11MPcore 79

StrongARM-110 17
PPC 405 (FX12) 33

Microblaze (ML505) 31

TABLE I
Measured worst-case execution time for a load operation on four embedded
systems in clock cycles when cache is disabled. The cost of a cache hit is 1

clock cycle. This table is based on data published in [18].

These system methods are enough to implement the Carousel
functionality, but a further method-invoking method is ex-
tremely useful. This executes an application method after
opening its code and stack space. call method takes three
arguments: Ai (the address of the target method for τi), yi
(the code size of τi), and zi (the stack size of τi). The method
invoking process is shown in Figure 10.

Two simple improvements to this basic design are used
within our experiments. Firstly, since code is read-only, the
close operation for code blocks does not need to write them
back to external RAM. They can simply be discarded. Sec-
ondly, since stack data is only valid for addresses above the
current stack pointer, the open and close operations for stack
blocks do not need to access external RAM at all. However,
swap in and swap out must always copy blocks, regardless
of their contents.

E. Prototype System Architecture

We constructed a prototype of the Carousel system within a
simulator. Based on our existing FPGA experience, we know
that the simulated system can be translated to FPGA hardware,
but a simulator can be built more quickly, which is valuable
for experimentation. Furthermore a simulator provides an easy
way to tweak design parameters such as n (the number of
Carousel blocks) and 2x (the size of each Carousel block)
during experiments. The simulator includes a Microblaze
CPU [19], an interrupt timer, an external RAM, a small SPM
for the OS, a DMA controller, and Carousel.

The OS is Carousel OS, a prototype RTOS implementing the
functions listed in section IV-D and specifically designed for
the Carousel architecture. This RTOS cannot easily be stored
in Carousel because it must remain in local RAM at all times.

C
P

U

Space for Task 1

Space for Task 2

Space for Task 3

Space for Task 4

LOCKED

ACTIVE

LOCKED

LOCKED

C
P

U

Space for Task 2

Space for Task 3

Space for Task 4

LOCKED

ACTIVE

Space for Task 5

Space for Task 6

LOCKED

SWAPPED OUT

SWAPPED OUT

SWAPPED OUT

T

T-p

T-n

0

Local R
A

M
Local R

A
M

E
xternal
R

A
M

swap_out
p blocks

Task
i
 method

Time

call_method(A
i
, y, z)

swap_in
p blocks

CPU A Ahi

ASPM SPM (1)

Data bus

+

Alo

External RAM

Translation
Unit (2)

Registers
r

0
 to r

n-1
 (3)

open
y code blocks

open
z stack blocks

close
y+z blocks

C
P

U

Local RAM
(cache/SPM)

E
xterna l R

A
M

Fig. 10. The method invocation procedure for Carousel, implemented by call method.

Rather than attempt to arrange for swap in, etc., to skip blocks
used by the RTOS, it is simply placed in a separate SPM.

The simulator includes some assumptions about timing,
based on real FPGA hardware. The simulated Microblaze CPU
uses the same execution times as the real CPU as documented
in [19]. Bus operation times are chosen to be typical of
embedded systems (Table I). The bus used in our experiments
imposes an overhead of 49 clock cycles for every transaction,
plus a further overhead of 1 clock cycle for every 4 bytes
in the transaction (rounding up). The maximum transaction
size is 64 bytes: the same limit as that imposed by PLB, the
Microblaze system bus [19].

These settings mean that it takes 50 clock cycles to load or
store a single word in external RAM, and a single clock cycle
to load or store a word in local RAM. Transferring 32 bytes
with dma copy takes 32

4 + 49 = 57 clock cycles; transferring
64 bytes takes 64

4 + 49 = 65.

V. SCHEDULABILITY ANALYSIS

Schedulability analysis is straightforward with Carousel. We
consider steps 2 through 6 within Figure 8 as part of the task
τi. This means that the cost of swap in and swap out are
incorporated into Ci, along with the whole of call method if
used (Figure 10).

If there were no static context-switch cost at all, i.e. the
RTOS scheduler and interrupt handler operate in zero time,
then the basic task scheduling equation for the worst-case
response time R applies [1]:

Ri = Ci +Bi +
∑

j∈hp(i)

dRi

Tj
eCj (3)

In that equation, Ri represents the worst-case response time
for τi, hp(i) is the set of tasks with higher-priority than τi, and
Ti represents task period. Bi is the blocking time: the longest
time for which a lower priority task locks a resource that is
shared with τi or any task j ∈ hp(i). Each task τi also has a
deadline Di where Di ≤ Ti.

As described in [1], the equation is easily refined to incor-
porate context switch costs to a task (CS1) and from a task
(CS2), provided that these are constants. For Carousel, they
are indeed constant, because all variable task-switching costs
are incorporated into the cost of running the higher-priority

task. The final equation is:

Ri = CS1+CS2+Ci+Bi+
∑

j∈hp(i)

dRi

Tj
e(CS1+CS2+Cj)

(4)
The system is considered schedulable if ∀i.Ri ≤ Di,

The blocking time Bi in equation 4 is modified to account
for the fact that Carousel is effectively a resource shared
by all tasks. The Carousel operations (open, swap in, etc.)
are critical sections: they cannot be interrupted, not even by
the RTOS. The worst-case blocking time for task preemption
is incurred when the scheduling event occurs right at the
beginning of either the longest resource access or the longest
critical section created by Carousel operations, i.e. the point
marked on Figure 11. That critical section incorporates a
complete context switch (from and to, CS2 and CS1), plus
close, swap in, swap out, and open. For all τi except the
lowest-priority task τN , Bi is greater than or equal to the
execution time of this critical section.

VI. EXPERIMENTS

Our experiments use the prototype system architecture de-
scribed in section IV-E. Source code for experiments may be
downloaded from http://www.jwhitham.org/pubs/.

A. Benchmark Tasks

We took some sample applications from the Mälardalen
Real-time Technology Center (MRTC) benchmarks [20].
These have the useful property of being single-path, so any
execution always produces the same execution time provided
that there is no interference from other tasks.

We excluded benchmarks that use floating-point, and bench-
marks requiring more than a combined 4kbytes of code and
data memory for efficient (in-SPM) execution (e.g. adpcm,
edn). Furthermore, we excluded benchmarks that can be op-
timized to nothing (e.g. loop3, fac) as they take no input and
have no effect on RAM. The list of remaining benchmarks
is shown in Table II. In general, larger benchmarks could be
accommodated by dynamic SPM allocation, e.g. [16], [17].
Note that a cache/SPM partitioning strategy would require
more than 16kb of local RAM to accommodate all the tasks,
even in this small-scale example!

Each benchmark was manually adapted for use with SPM,
and hence Carousel. The SPM usage scheme is very simple:
all of the code is stored in SPM along with the call stack, and
frequently-used global data is stored in SPM where possible.

swap_out
p2 blocks

Time

Critical section: interrupts ignored

swap_in
p1 blocks

open
y2 code blocks

open
z2 stack blocks

close
y1+z1 blocks

Scheduling event
occurs swap_in

p3 blocks

Preempting task

Scheduling
event handled

matmult

bsort100

compress

f ir

crc

cnt

jfdctint

fdct

duff

insertsort

binarysearch

expint

janne

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Carousel WCET
(observed)

Cache BCET
(observed)

Cache WCET
(observed)

Relative Execution Time

matmult
bsort100

compress
f ir

crc
cnt

jfdctint
fdct
duff

insertsort
Overhead (typ)

binarysearch
expint
janne

Overhead (min)

100 1000 10000 100000 1000000

Carousel WCET (observed)

Fig. 11. The worst-case blocking time for a task is always greater than or equal to the WCET of the critical section created by Carousel operations.

Task Name Code Size Data Size Stack Size
binarysearch 140 120 56
bsort100 208 408 56
cnt 280 544 56
compress 1660 1757 36
crc 252 1168 128
duff 304 0 56
expint 44 0 0
fdct 868 128 84
fir 840 701 112
insertsort 272 44 56
janne 100 0 0
jfdctint 928 256 84
matmult 156 5056 128

TABLE II
Benchmark programs used as application tasks. Sizes are in bytes.

Most of the tasks consist of a single method once optimized
for size, inlining methods that are only called from one place.

More complex techniques were only needed in three cases.
These reallocate the Carousel blocks dynamically within the
task, changing the code and data during execution. An exact
description is outside the scope of this paper, where experi-
ments require only that tasks make use of Carousel. However,
a short description follows.

The crc and matmult benchmarks used library subroutines
more than once. These could not be inlined without increasing
the code size, and were therefore invoked as subtasks using
the method-invoking method (section IV-D). The matrices
multiplied within the matmult benchmark also proved too large
to be loaded into Carousel, but it was possible to load a few
rows at a time into SPM through a loop tiling optimization of
the sort described in [21]. Though necessary changes were
applied by hand in this case, an dynamic SPM allocator
(e.g. [16], [17]) could have done some of the required work.

B. Assumptions

Using the simple strategy of mapping all code and stack
data to SPM, at least 2kbytes of space are required for some
tasks (e.g. compress, Table II). We set the total size of the
Carousel blocks (n2x) accordingly.

Experience with evaluating the SMMU tells us that we
cannot set n, the number of blocks, too high because all
comparisons must be performed in parallel and this can affect
the maximum frequency of the CPU. n = 16 was found to
be practical [18]. This leaves x = 7 for 128-byte blocks. The

Task Name Code Data Stack
Blocks Blocks Blocks

binarysearch 2 1 1
bsort100 2 4 1
cnt 3 4 1
compress 13 0 1
crc 2 8 1
→ icrc 4 0 1
duff 3 2 1
expint 1 0 0
fdct 7 1 1
fir 7 6 1
insertsort 3 1 1
janne 1 0 0
jfdctint 8 2 1
matmult 2 0 1
→ Initialize 2 13 1
→ Multiply 5 10 1

TABLE III
Carousel block count for tasks and subtasks (methods called by tasks).

resulting allocation of Carousel blocks is as shown in Table
III. Notice that there is no way to fit all tasks in Carousel
simultaneously. Furthermore, some tasks (crc, matmult) are
themselves split across more than one method.

C. Carousel Overheads

On Microblaze, Carousel OS requires 3.2 kbytes of SPM
space for its code and data tables. This includes all device
drivers and the scheduler. The (observed) worst-case value for
CS1 is 401 clock cycles, and the (observed) worst-case value
for CS2 is 387 clock cycles.

To measure the swapping overhead for different numbers of
Carousel blocks, we introduced a trivial task that immediately
returns - but nevertheless requires y blocks for code and z
blocks for stack. Table IV shows how the execution time of
this task varies with different values of y and z.

D. Task Set Generation

Carousel is intended to eliminate inter-task interference, and
this property is easily tested by looking for the main effect of
interference, specifically a change in execution time due to
preemption.

We generated one thousand task sets by assigning random
priorities, periods and offsets to each task listed in Table II.
The priority of each τi was assigned so that no two tasks have
equal priority. The offset of each τi was assigned a value
between 0 and Ti using a uniform pseudorandom number

Code Blocks Stack Blocks Overhead
1 0 864
1 1 1157
1 2 1443
2 0 1280
2 1 1573
2 2 1859
3 0 1696
3 1 1989
3 2 2275
4 0 2112
4 1 2405
4 2 2691
y z 416y+

286z + 455

TABLE IV
Carousel system overheads: the combined cost of swap in, swap out, open
and close for tasks requiring different numbers of code blocks (y) and stack

blocks (z). Each overhead value is in clock cycles. Every execution time
given in this paper incorporates these system overheads. The final row of the
table gives an upper bound on the overhead, expressed in terms of y and z.

generator. The period Ti was also assigned using the same
generator, with a range from 2Ci to max(4Ci,

SZ
4), where

SZ is the execution time for the entire task set, not including
bootup time. SZ = 15×106 clock cycles for our experiments.
Each deadline Di = Ti. We checked the schedulability of each
task set using equation 4, and rejected and regenerated each
task set found to be unschedulable.

E. Results

We observed that every execution of a specific task always
results in the same execution time (Table V). This is expected
given the single-path nature of the benchmark programs,
provided that preemption has no effect on the execution time.
Table V also shows how many times each task was preempted
across all task sets, demonstrating that task execution times
are indeed unaffected by preemption.

Figure 12 illustrates the relationship between the observed
WCETs of each task and the Carousel system overheads. It is
plain that the very short tasks (janne, expint, binarysearch) are
dominated by the overhead. However, the overhead is only a
very small part of the execution time of longer tasks.

F. Comparison with Cache

Carousel should also be competitive with techniques used
in previous work, and in order to examine this aspect, we
compared Carousel with an equally-sized cache (Table VI).
The cache provides 1kbyte of code space and 1kbyte of
data space, organized as 16 byte blocks. A simulation of
Microblaze’s cache, it is a direct-mapped Harvard-architecture
cache with a write-through policy and no allocate on write.

There is now some variation in execution time, clearly
visible in Figure 13. Although the tasks are single-path, their
execution times are now dependent on the state of the cache,
which is affected by the execution of other tasks. This is the
effect of inter-task interference, as shown in Figure 1. Some-
times, the variation is quite small (e.g. 1.2% for matmult). This
is because the benchmark task runs for a relatively long time,

Task Name Observed Observed Preemption
BCET WCET count

binarysearch 2086 2086 57
bsort100 94647 94647 1538
cnt 9328 9328 309
compress 76851 76851 1351
crc 40399 40399 824
duff 3874 3874 149
expint 1838 1838 50
fdct 5657 5657 202
fir 61835 61835 1167
insertsort 3392 3392 112
janne 1143 1143 59
jfdctint 9230 9230 289
matmult 728391 728391 7981

TABLE V
Observed best-case and worst-case execution times (BCET, WCET) for the

tasks (clock cycles) obtained by experiment on a Carousel-architecture
machine (section VI-E).

swap_out
p2 blocks

Time

Critical section: interrupts ignored

swap_in
p1 blocks

open
y2 code blocks

open
z2 stack blocks

close
y1+z1 blocks

Scheduling event
occurs swap_in

p3 blocks

Preempting task

Scheduling
event handled

matmult

bsort100

compress

f ir

crc

cnt

jfdctint

fdct

duff

insertsort

binarysearch

expint

janne

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Carousel WCET
(observed)

Cache BCET
(observed)

Cache WCET
(observed)

Relative Execution Time

matmult
bsort100

compress
f ir

crc
cnt

jfdctint
fdct
duff

insertsort
Overhead (typ)

binarysearch
expint
janne

Overhead (min)

100 1000 10000 100000 1000000

Carousel WCET (observed)

Fig. 12. The relationship between the observed WCETs of each task and the
Carousel system overheads (marked in black). A logarithmic scale is used to
accommodate the wide range of execution times. 2691 (Table IV) is taken as
a typical overhead.

and the effects of any interference are amortized across this
time. (The true WCET, considering all possible interference,
may be much greater than the observed value given in Table
VI.)

Four tasks see an increase in WCET for Carousel, i.e. the
task is slower on a Carousel architecture. In three cases (bina-
rysearch, expint, janne) this is because the tasks are short and
complete very quickly. Thus, the overhead of using Carousel
is not made up by any improvement in execution time. For
instance, expint requires only one code block (Table III), so
an overhead of 864 clock cycles is imposed by Carousel (Table
IV). This accounts for almost half of the task’s execution time
(1838). The cache has a lower overhead and completes in 1046
clock cycles. For compress, the difference is marginal, and
improvements could be obtained by better use of SPM.

Nine tasks see an improvement in WCET for Carousel
versus a cache. Sometimes the improvement is very large.
For instance, the bsort100 benchmark requires over 590,000
clock cycles with a cache, but under 95,000 clock cycles with
Carousel! Carousel has improved performance.

Task Name Observed Observed Comparison
BCET WCET factor

binarysearch 143 468 0.22
bsort100 591766 596251 6.30
cnt 10921 11961 1.28
compress 67409 70074 0.91
crc 57104 59314 1.47
duff 8238 8888 2.29
expint 981 1046 0.57
fdct 8384 9944 1.76
fir 90981 107296 1.74
insertsort 6083 6603 1.95
janne 286 481 0.42
jfdctint 14325 16275 1.76
matmult 1030453 1043323 1.43

TABLE VI
Observed execution times (clock cycles) obtained by experiment on a

cache-architecture machine. Comparison factor is the cache observed WCET
divided by the Carousel observed WCET.

swap_out
p2 blocks

Time

Critical section: interrupts ignored

swap_in
p1 blocks

open
y2 code blocks

open
z2 stack blocks

close
y1+z1 blocks

Scheduling event
occurs swap_in

p3 blocks

Preempting task

Scheduling
event handled

matmult

bsort100

compress

f ir

crc

cnt

jfdctint

fdct

duff

insertsort

binarysearch

expint

janne

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Carousel WCET
(observed)

Cache BCET
(observed)

Cache WCET
(observed)

Relative Execution Time

matmult
bsort100

compress
f ir

crc
cnt

jfdctint
fdct
duff

insertsort
Overhead (typ)

binarysearch
expint
janne

Overhead (min)

100 1000 10000 100000 1000000

Carousel WCET (observed)

Fig. 13. The relationship between the observed BCETs and WCETs for
cache (Table VI) and Carousel (Table V). Tasks are sorted into order of Figure
12 (i.e. the shortest tasks appear at the top) and normalized to the Carousel
observed WCET.

Carousel has also improved schedulability versus a cache.
Of the one thousand task sets used to generate the data in
Table V, only 366 were schedulable with cache for Table VI.
The remaining 75% missed at least one deadline.

G. Causes of Improvement

The improved schedulability is not due to the avoidance
of inter-task interference. There are two causes, both pleasant
consequences of Carousel’s design.

Firstly, Carousel permits a task-specific split between code
and data, but the cache split is fixed, with exactly 1kb for code
and 1kb for data. This is a problem for matmult, where the
working set is larger than 1kb. If we double the data cache
size, the matmult execution time drops to around 697,000.
A cache does not allow any dynamic flexibility of this sort;
Carousel does.

Secondly, the write-through policy of the Microblaze cache
is causing a significant slowdown. bsort100 performs over
10,000 stores, and the overwhelming majority of these use

Task Name Observed Observed Comparison
BCET WCET factor

binarysearch 93 613 0.29
bsort100 91406 94591 1.00
cnt 5701 7976 0.86
compress 15699 19664 0.26
crc 44314 48084 1.19
duff 1038 2208 0.57
expint 981 1046 0.57
fdct 1584 3404 0.60
fir 55736 83036 1.34
insertsort 983 1633 0.48
janne 286 481 0.42
jfdctint 4325 6860 0.74
matmult 611263 642983 0.88

TABLE VII
Observed execution times (clock cycles) obtained by experiment on a

cache-architecture machine with a write-back policy.

addresses that are already in cache. However, they must be sent
to the external RAM as well, and subsequent operations must
wait for them to complete. If we were to substitute a write-
back policy [22], the execution time would drop to 94,000
clock cycles.

SPM technology (and thus, Carousel) already operates in
write-back mode. This is a natural consequence of requiring
tasks to explicitly copy data between external RAM and SPM.
It requires no extra hardware. The same is not true for write-
back mode in a cache, which adds significant complexity due
to the need to track which data in the cache has changed. This
data will have to be written back to external RAM if replaced
in cache; thus, replacement is a multi-step process, perhaps
requiring copying in two directions. This is why the simplest
cache policy is used for Microblaze.

Write-back caching also makes WCET analysis more diffi-
cult [14]. Intuitively, the timing-related state space of the cache
is greatly expanded by the possibility that data may not only
be in cache (or not) but also modified (or not).

That said, if a write-back cache were introduced, the results
would appear as shown in Table VII. This brings the cache
and Carousel results closer together. Carousel remains a great
option for some benchmarks (e.g. bsort100, crc), but the gap is
closed. Smaller benchmarks are now much better with cache,
because the overhead is much lower.

H. Worst-case Blocking

The task sets executed on our prototype system do not
share any resources other than Carousel itself. This means
that blocking is limited to that incurred by Carousel (section
V). Measurements from our prototype system indicate that
Bi = 4321 for all τi except the lowest-priority task τN , as
BN = 0.

For a task set where resources other than Carousel are
shared, ∀i 6= N.Bi is the maximum of 4321 and whatever
worst-case blocking time is imposed by the other resources
used by τi.

VII. IMPROVEMENTS TO CAROUSEL

The basic design of Carousel can be improved in a number
of ways. Two simple improvements, already used within our
experiments, are discarding read-only data rather than writing
it back, and not reading uninitialized data (section IV-D).

Another obvious improvement is to place code and data into
two separate Carousels. This fits well with the Harvard archi-
tecture of many embedded systems CPUs [22]. Furthermore,
the code-side Carousel can be explicitly read-only, meaning
that swap out never needs to write back its contents. Finally,
dividing Carousel in this way allows more blocks to be used,
as the number of parallel comparisons is halved.

Carousel blocks are used with an SPM within our experi-
ments, but they can also be used with a cache, by substituting
cache for SPM within Figure 9. Rather than dma copying
during open, the open method just invalidates all cache blocks
within the Carousel block, and code or data is loaded on
demand. Instruction and data cache analyses will be needed
to determine the WCET, but with the advantage that there is
still no inter-task interference. However, swap out will need
to save the state of the cache tag store in addition to the block
contents. This will increase the cost of swap in and swap out.

This technique is likely to be most advantageous in mixed-
criticality systems with both hard real-time and non real-time
tasks. But caches are usable in hard real-time systems given
appropriate hardware [4], so even hard real-time software
development may benefit from the technique.

VIII. CONCLUSION

This paper has presented Carousel, a mechanism to manage
local RAM space. Carousel eliminates inter-task interference
by requiring each task to save and restore any local RAM that
it wishes to use. Thus, the costs of preemption are handled
explicitly by the preempting task, instead of being imposed
on the preempted tasks.

Our experiments show that Carousel does indeed eliminate
inter-task interference. It provides substantially better perfor-
mance than a cache-architecture machine with a write-through
policy, and a comparison with a write-back policy also gives
good results. And unlike earlier approaches for eliminating
interference, such as cache partitioning, Carousel allows each
task to use as much of the local RAM as required. One
consequence of this improvement is that task sets are more
likely to be schedulable; for instance, of one thousand task
sets schedulable with Carousel, only 366 were schedulable
with an cache-architecture machine (section VI).

However, Carousel does have unavoidable limitations. Be-
cause it swaps memory to and from a stack, it cannot support
any scheduling paradigm where task execution is not strictly
nested. It requires something similar to Baker’s stack resource
protocol (SRP). There is also a somewhat higher overhead
for invoking tasks. Nevertheless, the elimination of inter-task
interference brings plenty of advantages.

IX. ACKNOWLEDGMENTS

This work was supported by EPSRC project TEMPO,
no. EP/G055548/1. Thanks to Martin Schoeberl and Ian Gray
for their comments on drafts, to Robert Davis for his greatly
helpful advice on scheduling theory and response time equa-
tions, and to the reviewers for their suggestions.

References
[1] A. Burns and A. J. Wellings, Real-Time Systems and Programming

Languages, 4th Edition. Addison Wesley, 2009.
[2] J. Stärner and L. Asplund, “Measuring the cache interference cost in

preemptive real-time systems,” in Proc. LCTES, 2004, pp. 146–154.
[3] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The

influence of processor architecture on the design and the results of
WCET tools.” Proc. IEEE, vol. 91, no. 7, pp. 1038–1054, 2003.

[4] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 28, no. 7, pp. 966–978, 2009.

[5] R. Reddy and P. Petrov, “Eliminating inter-process cache interference
through cache reconfigurability for real-time and low-power embedded
multi-tasking systems,” in Proc. CASES, 2007, pp. 198–207.

[6] S. Altmeyer, R. Davis, and C. Maiza, “Cache related pre-emption delay
aware response time analysis for fixed priority pre-emptive systems,” in
Proc. RTSS, 2011, pp. 261–271.

[7] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings,
“Adding instruction cache effect to schedulability analysis of preemptive
real-time systems,” in Proc. RTAS, 1996, pp. 204–.

[8] H. Ramaprasad and F. Mueller, “Bounding preemption delay within data
cache reference patterns for real-time tasks,” in Proc. RTAS, 2006, pp.
71–80.

[9] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem—overview of methods and survey of tools,”
Trans. on Embedded Computing Sys., vol. 7, no. 3, pp. 1–53, 2008.

[10] O. Temam, “An algorithm for optimally exploiting spatial and temporal
locality in upper memory levels,” IEEE Trans. Computers, vol. 48, no. 2,
pp. 150–158, 1999.

[11] T. P. Baker, “Stack-based scheduling of real-time processes,” Real-Time
Syst., vol. 3, no. 1, pp. 67–100, 1991.

[12] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175–1185, 1990.

[13] I. Puaut, “Cache analysis vs static cache locking for schedulability
analysis in multitasking real-time systems,” in Proc. WCET, Vienna,
Austria, June 2002.

[14] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke,
B. Triquet, and R. Wilhelm, “Predictability considerations in the design
of multi-core embedded systems,” in Proceedings of Embedded Real
Time Software and Systems, 2010.

[15] F. Mueller, “Compiler support for software-based cache partitioning,” in
Proc. LCTES. New York, NY, USA: ACM Press, 1995, pp. 125–133.

[16] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation
for scratch-pad memory using compile-time decisions,” Trans. on Em-
bedded Computing Sys., vol. 5, no. 2, pp. 472–511.

[17] J.-F. Deverge and I. Puaut, “WCET-Directed Dynamic Scratchpad Mem-
ory Allocation of Data,” in Proc. ECRTS, 2007, pp. 179–190.

[18] J. Whitham and N. Audsley, “Implementing Time-Predictable Load and
Store Operations,” in Proc. EMSOFT, 2009, pp. 265–274.

[19] Xilinx, “Microblaze processor reference guide,” http://www.xilinx.com/
bvdocs/userguides/ug081.pdf, Manual UG081, 2005.

[20] MRTC, “WCET Benchmarks,” http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html.

[21] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif,
and A. Parikh, “Dynamic management of scratch-pad memory space,”
in Proc. DAC, 2001, pp. 690–695.

[22] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth
Edition: A Quantitative Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2006.

