
The Limits of TDMA Based Memory Access
Scheduling

Jack Whitham
Real-Time Systems Group

Department of Computer Science
University of York, UK

jack@cs.york.ac.uk

Martin Schoeberl
Department of Informatics and Mathematical Modeling

Technical University of Denmark
masca@imm.dtu.dk

Abstract—In a multicore system, several CPUs frequently
require access to a shared memory. If this access is required to
be time-predictable to enable worst-case execution time (WCET)
analysis of tasks, a form of TDMA based bus arbitration is
usually used. A global TDMA schedule controls when each CPU
may make use of the bus. This schedule is normally static.

It has been suggested that the TDMA schedule could be
specialized to reduce the WCET for particular tasks. In this
paper, we show that there is a hard limit to the potential of this
technique within a general-purpose system. We simulate single-
path tasks running within a multitask, multicore system and
apply TDMA slot scheduling on the memory access traces. For
medium numbers of CPU cores and low memory latencies, CPU
utilization can be improved by up to 25%, but as more cores
are used and memory latency increases, the bus gets saturated
and the difference between a specialized schedule and a generic
schedule disappears.

I. INTRODUCTION

In a typical multicore embedded system, multiple CPU
cores share a single memory bank [3]. This is used for
storing code and shared data. As only one CPU may access
the shared memory at a time, an arbiter is used to resolve
conflicts where more than one CPU wishes to begin an access.
The shared memory bus is a bottleneck that may limit the
overall utilization of the CPU cores, so it is important to
choose arbitration algorithms that maximize utilization [5].
Furthermore, for hard real-time tasks, it is essential to choose
arbitration algorithms that are compatible with worst-case
execution time (WCET) analysis to provide a means to ensure
that hard real-time deadlines will always be met [6].

Generally, maximizing CPU utilization while permitting
WCET analysis is a challenging problem. To date, two ap-
proaches have been taken for multicore systems. Firstly, a
pessimistic assumption can be made for each memory access:
the arbiter delays every access for the maximum possible
time [5]. This is suitable for any system with a fair arbiter,
i.e. one that provides every CPU with equal access to the
bus. However, the guaranteed utilization is reduced by the
assumption of delay. A second approach uses time-division
multiple access (TDMA) as the arbitration scheme [6], [11].
This makes it possible to accurately estimate the delay that
will be enforced by the arbiter. Furthermore, the sizes of the
time slots assigned by the arbiter can be reprogrammed to

suit the current task set, creating a task-set specific TDMA
schedule [2], [12].

This paper uses an idealized system model to demonstrate
that, even under ideal conditions, specialized TDMA schedules
are only useful for relatively small number of CPUs and rel-
atively low memory latencies. It uses realistic memory access
patterns derived from benchmark code and compares CPU
utilization using generic TDMA schedules, task-set specific
schedules and absolute upper bounds. Single-path programs
are used for the experiments on the grounds that if utilization
cannot be improved with single-path code, it also cannot be
improved for conventional code.

The structure of this paper is as follows. Related work is
summarized in Section II. Section III describes the experi-
mental environment that is used within Section IV to test the
effects of various TDMA schedulers on utilization. Section
V discusses the results of these experiments and Section VI
concludes.

II. BACKGROUND

Shared memory is commonly used for inter-task communi-
cation, because of all the possible methods of communication,
it maps most easily to programming languages. Conventional
multi-threaded programming environments assume that mem-
ory is shared between threads.

Shared memory introduces the possibility of timing inter-
ference between tasks. This occurs when one task affects the
execution time of another. A typical scenario occurs when a
shared cache is present, but even a shared bus is sufficient
to provoke interference. Two tasks cannot access the bus
simultaneously. Unless effort is expended to isolate the tasks
from such effects, this is highly unpredictable. The classical
approach to WCET analysis is not applicable since it assumes
no interference from other tasks [9], although some variants
assume maximum interference [5].

One way to eliminate shared bus interference is to adopt
time-division multiple access (TDMA) arbitration, which
grants each CPU access to the bus on a fixed, statically
predictable schedule. The CPU with access to the bus at time
t is determined only by a function of t. TDMA arbitration
permits classical WCET analysis on multicore systems [7],
[8].

The simplest form of TDMA schedule provides bus access
to CPUs in a strict rotation, providing a fixed time-slice to
each. This could be called a generic TDMA schedule. Andrei
et al. have published results demonstrating that task-set specific
TDMA schedules can substantially improve task WCETs [2],
[11]. However, such schedules are difficult to generate due
to the large search space created by conventional tasks. At
present, the optimal schedule for a task set can only be found
by exhaustive search, and the search space is vastly increased
by data-dependent control flow within the tasks, as control
flow determines when memory access operations are issued.

It follows that the search space can be greatly reduced if
single-path programming is used. Single-path programming
was introduced by Puschner as an approach for generating
time-predictable code [10], as the WCET of a single-path
program is equal to its execution time. Single-path code
contains no data-dependent control flow, as control flow is
if-converted to predicates [1]. All hard real-time tasks are
bounded by definition, and therefore all hard real-time tasks
can be translated into an equivalent single-path form.

III. EXPERIMENTAL ENVIRONMENT

An optimal task-set specific TDMA schedule can only
be found by exhaustive search in the general case, but the
complexity of the search space can be reduced by considering
only tasks composed of single-path code. This is an idealized
case, but idealized cases are useful when examining theoretical
limits, because realistic cases cannot exceed the idealized
bound.

This section describes an experiment to compare generic
and task-set specific TDMA arbitration on a system executing
single-path code. To date, the only experiment to consider task-
set specific arbitration used conventional (multi-path) tasks
rather than single-path code [2], and hence made use of
heuristics to generate TDMA schedules. In this paper, the
use of single-path tasks allows the creation of locally optimal
TDMA schedules.

A. Independent Variables

The variables num cpu cores and access time define the
properties of the architecture under test: the number of CPU
cores and the number of clock cycles required to complete a
memory access. A third independent variable is the algorithm
that is used to generate the task-set specific schedule: these
are described in section IV. To avoid dependence on a par-
ticular task set, every experiment is repeated with the same
collection of 200 randomly generated task sets, each of which
is produced as follows:

Task Set: A task set consists of 100 tasks. The tasks are
assigned priorities in order of size, such that the largest task
is executed first.

Task: Each task is represented as a linear sequence of in-
structions. The tasks are derived from the benchmark programs
shown in Table I. These benchmarks are well-known pro-
grams, widely used in WCET-related research [4]. Although
those programs are originally not single-path programs, they

CPU 0
Single-path instruction stream

CPU 1
Single-path instruction stream

Data bus

Data bus

TDMA schedule stream

External
Memory

Shared
data bus

T
D

M
A

 A
rbiter

(control s acces s to da ta bus)

More CPUs...

Fig. 1. Simulated Architecture.

are bounded, and can therefore be converted into single-path
form by the if-conversion process [1].

This paper makes use of execution traces representing the
worst-case execution path (WCEP) for each benchmark. This
is the path that will remain after single-path conversion. As
these programs are quite simple, the benchmark creators have
been able to force the WCEP to be taken upon every execu-
tion [4]. Therefore, the WCEP execution trace can be captured
from a single simulated execution. This means there is no need
to actually apply the if-conversion process; equivalent results
are available from simple execution thanks to the simplicity
of the benchmark code.

Within the trace, each executed instruction is classified as
“internal” or “memory access”, discarding all other informa-
tion about its function. Internal operations do not make any use
of the memory bus, and include arithmetic and control-flow
operations. A single-path program may include control-flow
operations provided that they are not data-dependent.

The tasks used in the experiment are generated by choos-
ing contiguous slices from these traces. For each task, a
benchmark trace is chosen at random from Table I. Then,
an array slice containing at most 2000 instructions is taken
from that trace. Small task sizes are deliberately used to keep
the simulation time reasonable while capturing all relevant
properties.

B. Simulated Architecture

Each task set is executed in a simulator with the archi-
tecture as illustrated in Figure 1. A TDMA arbiter controls
access to the external memory via a shared data bus. There
are num cpu cores CPUs, each executing single-path code
represented as a linear sequence of instructions. An internal
instruction always requires one clock cycle to execute. A
memory access instruction also requires one clock cycle, which
is always followed by at least access time − 1 clock cycles
of latency, and a possible blocking time if the TDMA arbiter
does not immediately give access permission to the CPU.
The TDMA arbiter operates according to a linear sequence of
scheduling commands, which specify which CPU is permitted
to initiate a memory access in each clock cycle. In the
simulation an ideal instruction cache and no data caching are
assumed. Therefore, accesses to the shared memory occur only
when memory access instructions are executed.

Benchmark Nr. Mem. Nr. Internal Benchmark Nr. Mem. Nr. Internal
Access Access

adpcm 1140 88704 fir 460 1741
bs 7 67 insertsort 209 433
bsort100 19901 45862 jfdctint 320 1507
cnt 405 1858 lcdnum 20 141
compress 1267 1851 matmult 26801 68413
crc 1194 25646 ns 625 4919
edn 10830 42810 nsichneu 1992 3012
fdct 257 1177 statemate 455 229

TABLE I
BENCHMARK PROGRAMS TAKEN FROM [4]. COUNTS FOR memory access AND internal INSTRUCTIONS ARE DERIVED FROM THE EXECUTION TRACE OF
THE MAIN() FUNCTION OF EACH BENCHMARK, CLASSIFIED AS DESCRIBED IN SECTION III-A. EXECUTION TRACES ARE GENERATED BY COMPILING

WITH GCC (-O2) FOR THE MICROBLAZE CPU ARCHITECTURE [13], THEN EXECUTING WITHIN A MICROBLAZE SIMULATOR.

C. Simulation

Simulation is notionally a two-step process that accepts a
task set, access time and num cpu cores as inputs. In the first
step, the TDMA schedule is generated. In the second step,
tasks are executed with this memory access schedule. Each
CPU executes one task from the task set, and when that task
finishes, another is removed from the task set according to the
priority order until the task set is empty. When all CPUs have
run out of instructions to execute, the simulation stops.

D. Dependent Variable

The simulation determines the processor utilization of each
simulation. This is the dependent variable of interest. It is the
proportion of clock cycles during which a CPU is busy (i.e. not
blocked). In this paper, multicore utilization is computed as:

U =
number of busy cycles across all CPUs
number of clock cycles in simulation

(1)

A CPU is considered busy when it is executing an internal or
memory access instruction, and the simulation is considered
complete when no tasks remain in the task set. Both types of
instruction always require exactly one busy cycle, because the
CPU is not considered “busy” when it is blocked and waiting
for the memory bus. The number of busy cycles is constant for
each task set, because the instruction count does not change.

The total number of clock cycles can be reduced by paral-
lelism when more than one CPU core is present. In this way,
the utilization can be increased from 1.0 (the value for a single
CPU) up to an absolute maximum of num cpu cores. The
effectiveness of parallelism depends on the choice of TDMA
schedule. Median utilization values are derived by collecting
U for all task sets, sorting them into numerical order, and
choosing the midpoint.

IV. EXPERIMENTS WITH TDMA SCHEDULERS

The choice of TDMA schedule affects the utilization by
determining when the tasks get access to the shared memory.
To enable experiments with different TDMA schedulers, it is
useful to have some notion of the absolute upper bound on
utilization.

The following equation for estimating the upper bound will
produce an optimistic result that is likely to be greater than

CPU 0

CPU 1

M
10 2 3 4 5 6 7 8 9

Clock cycle

End of simulation

I I

M

I I I II I I I I

I I
Time used by memory accesses

Time used by internal instructions in
parallel with memory accesses

Instructions executed after memory accesses

One unused cycle

Fig. 2. Example to illustrate equation 2. In this example, I = 11, M = 3,
a = 4 and n = 2. There are M + I = 13 busy cycles. Because memory
accesses take a total of Ma = 8 cycles, 8 internal instructions can execute
in parallel on the second CPU and 3 others remain. Therefore, a total of 10
clock cycles are required, and Umax = 13

10
= 1.3.

the true upper bound, because it assumes that all instructions
within the task set can be rescheduled into any order. The
parameters are the number of internal instructions I and the
number of memory access instructions M within the task set.
num cpu cores is shortened to n and access time is shortened
to a:

Umax =
M + I

Ma+ b 1nmax(0, I −Ma(n− 1) + n− 1)c
(2)

The intuition behind equation 2 is shown in Figure 2. It is
the number of busy cycles (a constant, M + I , for each task
set) divided by the total number of clock cycles. The memory
access instructions cannot be parallelized, so they always
require exactly Ma clock cycles. The internal instructions can
run in parallel, so they occupy the space alongside the memory
access operations (Ma(n− 1) instructions) and, if that is not
sufficient space for I instructions, they overflow into the space
after M .

Table II shows the idealized utilization across a number
of simulations using different values of access time and
num cpu cores. Umax is never greater than num cpu cores,
and in general, utilization is always bounded by memory
bandwidth (if all internal instructions can be executed in
parallel with memory access) or by num cpu cores. The latter
is seen in Table II wherever U = num cpu cores.

A. Generic TDMA Schedules

A static, non-task-set specific TDMA schedule typically
falls short of the ideal utilization Umax, as illustrated by Table
III. Where access time and num cpu cores have large values,
static arbitration gets within 10% of the ideal figure, because

num cpu access time
cores 1 2 3 4 5 6
1 1.00 0.82 0.69 0.60 0.53 0.48
2 2.00 1.64 1.39 1.14 0.91 0.76
3 3.00 2.28 1.52 1.14 0.91 0.76
4 4.00 2.28 1.52 1.14 0.91 0.76

5 to 10 4.56 2.28 1.52 1.14 0.91 0.76

TABLE II
UPPER BOUND Umax FOR SIMULATED ARCHITECTURES: MEDIAN VALUES

ACROSS 200 TASK SETS.

num cpu access time
cores 1 2 3 4 5 6
1 100% 100% 100% 100% 100% 100%
2 85% 76% 71% 71% 75% 81%
3 75% 68% 78% 87% 89% 91%
4 67% 77% 87% 90% 92% 93%
5 65% 85% 89% 92% 93% 94%
6 69% 86% 90% 92% 93% 94%
7 74% 87% 91% 92% 93% 93%
8 79% 88% 91% 92% 92% 93%
9 81% 88% 90% 91% 92% 92%

10 82% 88% 90% 91% 91% 91%

TABLE III
UTILIZATION WITH STATIC TDMA ARBITRATION, EXPRESSED AS A

PROPORTION OF Umax . THE TDMA TIME SLICE IS access time.

the operation of the system is bounded by shared memory
contention.

The greatest discrepancies between static TDMA arbitration
and the ideal occur with small access time and a medium
number of CPUs. A difference of up to 35% is observed versus
Umax with num cpu cores = 5. This occurs because the CPUs
are often still executing internal instructions while the memory
bus is available. If the generic TDMA schedule could adapt
to the memory requirements of each task, this situation could
be avoided.

In order to quantify this effect, the notion of a memory
idle cycle is introduced. This is any clock cycle where no
CPU is waiting to finish a memory access instruction. Memory
idle cycles may occur for two reasons. Firstly, all CPUs may
have internal instructions waiting to be executed. Secondly,
the TDMA arbiter may have assigned access rights to a CPU
that cannot currently use it. Figure 3 illustrates both types of
memory idle cycle. Since memory access operations cannot
occur in parallel, they set an upper bound on the utilization
(equation 2). In many cases, utilization is bounded not by
the number of CPUs, but by the quantity of memory accesses
(Table II). Therefore, memory idle cycles should be eliminated
wherever possible in order to maximize the utilization.

The first type of memory idle cycle can be eliminated in
some cases by choosing the priority order of memory accesses
such that internal instructions always occur in parallel with
memory access instructions. The second type can be eliminated
in all cases by ensuring that the TDMA arbiter always gives
access to a CPU ready for a memory access instruction. Both
require the introduction of task-set specific TDMA schedules.

wait

Allow CPU 0 Allow CPU 1

I M

M

Allow CPU 0

A A A

10 2 3 4 5 6 7 8 9 10 11 ...
Clock cycles

Allow CPU 1 Allow CPU 0

AA

M

Allow CPU 1

I A A

Memory idle
cycle (first type)

Memory idle cycles
(second type)

12 13 14 15 16 17 18

......

I

Memory idle
cycle (first type)

Generic TDMA
schedule stream

CPU 0

CPU 1

M

wait waitwait

wait I I I I I

I I

Fig. 3. Memory idle cycles occur whenever the shared memory bus is
inactive, either because the CPUs are executing internal instructions (first
type) or because the CPU that is permitted to begin a memory access is
currently unable to do so (second type).

B. Greedy Scheduling Algorithm

Memory idle cycles can be significantly reduced by a move
to a task-set specific TDMA schedule. Suppose that such a
schedule can be of any length. Since the tasks are single-
path, it is possible to simulate any form of memory arbi-
tration, including fixed priority, round-robin, or even a fully
customized TDMA schedule as proposed by Andrei et al. [2],
and it will be easier to search for such a schedule because
of the simplicity of the task execution model. The practical
disadvantage is that a custom schedule of any length may
require additional hardware resources or memory bandwidth,
but this is not relevant to a study of the limitations of such
techniques.

The results in Table IV were produced using a task-set
specific TDMA schedule generated by a greedy algorithm that
attempts to execute all memory access instructions as soon as
possible. In order to eliminate the second type of memory idle
cycle, the algorithm ensures that any CPU executing a memory
access instruction has a chance of getting access to the shared
bus, no matter when the access is initiated. That is, even if
CPU 0 currently has priority, CPU 1 can still use the bus if
CPU 0 does not need it.

If more than one CPU attempts to execute a memory access
instruction simultaneously, then a priority order is used to
determine which CPU is granted access. Each completed
memory access causes this priority order to rotate, so that each
CPU gets equal time in the high priority state. This scheduling
algorithm is greedy because its decisions consider only the
current state. It does not perform any sort of lookahead or
backtracking, so decisions are only guaranteed to be locally
optimal.

The effect is a significant reduction in the number of
memory idle cycles (Table V). Table IV shows that the median
utilization moves closer to the ideal figures presented in Table
II. The largest discrepancy from Umax is now observed as just
15%.

C. Further Improvements

Table IV shows that utilization for small values of ac-
cess time and num cpu cores is brought closer to the ideal
utilization by task-set specific scheduling. However, a smarter
scheduling algorithm may yield further improvements, as
memory idle cycles still remain (Table V). If all of these

num cpu access time
cores 1 2 3 4 5 6
1 95k 95k 92k 92k 92k 92k 92k 92k 92k 92k 92k 92k
2 47k 36k 41k 27k 44k 20k 48k 19k 44k 15k 31k 13k
3 29k 15k 26k 9806 19k 5145 13k 3762 18k 1824 14k 2263
4 20k 8773 16k 2088 11k 1361 11k 671 12k 259 12k 987
5 13k 4705 8776 1599 9195 648 10k 321 8573 381 9447 69
6 12k 2316 8228 407 7995 289 7588 213 10k 360 8292 360
7 8504 598 8611 418 8662 79 10k 123 9100 47 10k 97
8 7130 302 8041 333 8317 22 10k 135 11k 51 11k 26
9 6489 130 8225 189 5873 140 8648 154 14k 46 12k 152
10 4341 238 5322 212 8746 100 10k 30 13k 41 10k 9

TABLE V
MEDIAN NUMBER OF MEMORY IDLE CYCLES FOR THE STATIC TDMA SCHEDULE (LEFT) AND THE TASK-SET SPECIFIC SCHEDULE FROM THE GREEDY

ALGORITHM (RIGHT). THERE IS NO CHANGE FOR num cpu cores = 1 BECAUSE TDMA ARBITRATION IS UNUSED THERE. FOR ALL OTHER CASES, THERE
IS A SIGNIFICANT REDUCTION.

num cpu access time
cores 1 2 3 4 5 6
1 100% 100% 100% 100% 100% 100%
2 96% 90% 85% 85% 89% 93%
3 91% 84% 93% 97% 98% 99%
4 85% 94% 98% 99% 100% 100%
5 86% 98% 100% 100% 100% 100%
6 93% 99% 100% 100% 100% 100%
7 97% 100% 100% 100% 100% 100%
8 98% 100% 100% 100% 100% 100%
9 99% 100% 100% 100% 100% 100%

10 99% 100% 100% 100% 100% 100%

TABLE IV
UTILIZATION FOR EACH EXPERIMENT WITH A GREEDY SCHEDULE,

EXPRESSED AS A PROPORTION OF Umax .

num cpu access time
cores 1 2 3 4 5 6
1 100% 100% 100% 100% 100% 100%
2 97% 92% 86% 86% 90% 93%
3 93% 87% 95% 98% 99% 99%
4 88% 96% 99% 100% 100% 100%

TABLE VI
UTILIZATION FOR EACH EXPERIMENT USING THE DEPTH-BOUNDED

SEARCH ALGORITHM WITH n = 6, EXPRESSED AS A PROPORTION OF
Umax . LARGE VALUES OF num cpu cores ARE NOT SHOWN HERE AS THE

O(2n)-TIME SEARCH PROCESS PROVED TO BE COMPUTATIONALLY
INTRACTABLE.

were eliminated, the utilization would reach the practical
maximum. The shared memory bus is the bottleneck for
the system, and if there are no memory idle cycles, then
the system operates as efficiently as it possibly can without
reordering instructions. Andrei used a simulated annealing
search procedure to determine good TDMA schedules [11].
For single-path tasks, the problem is easier because there is no
dynamic control flow. Therefore, a simpler search procedure
can be used.

Table VI shows the utilization when the TDMA schedule is
determined by a depth-bounded search. This search considers
a “decision” to be any occasion where two or more CPUs are
both attempting to begin a memory access. The search tries
out all possible choices for each decision, and will look ahead
at up to n future decisions. (n = 6 for Table VI.) The choice

made is the one that minimizes memory idle cycles, and (in the
case of a tie) maximizes the number of executed instructions.

Table VI shows that the degree of improvement from
search versus the greedy algorithm is quite poor. The gap
between Umax and the utilization from the TDMA schedule
has narrowed by only a few percent at most. This suggests
that Table IV is already very close to the practical maximum
available with any schedule.

V. DISCUSSION

The results in section IV confirm that task-set specific
TDMA schedules lead to improvements in utilization. For
single-path tasks, efficient greedy algorithms can produce
good schedules that bring utilization very close to Umax.
For larger num cpu cores and access time, contention for the
memory bus has become the (unavoidable) limiting factor.
This is expected, given the well-known memory bottleneck
phenomenon [3].

However, the findings also illustrate a unintuitive result,
which is that task-set specific TDMA schedules are only
helpful in reducing the memory bottleneck in a restricted
set of special cases. This set is centered upon a medium
number of CPUs (4 or 5) and a very low memory latency
(access time = 1). These cases have the property that CPUs
are often still executing internal instructions when the memory
bus becomes available. This is less likely to happen when
num cpu cores or access time are increased, because the
time between bus availability is also increased within the
static TDMA schedule. It is also less likely to happen when
num cpu cores is decreased, because the penalty of missing
an opportunity to access memory is less severe. For these
special cases, a task-set specific TDMA schedule can boost
utilization by around 25% under ideal circumstances. It is
no coincidence that the numbers here (4 CPUs, 25%) are
approximately equal to the average period between memory
access instructions within a task and the inverse of that period
respectively.

In general, the benefit of task-set specific TDMA schedules
is quite poor. For large access time and num cpu cores, a
specialized schedule can get within 1% of the ideal utilization,
whereas a static schedule will only be within 10%.

VI. CONCLUSION

In this paper we have evaluated the limits of using task-
set specific TDMA schedules for a shared memory bus. Our
metric is the combined utilization of the task set. We assumed
single-path programs in the evaluation, as their static behavior
makes them ideal for TDMA schedule optimization. We found
that a greedy algorithm could generate schedules close to the
theoretical maximum utilization Umax, and that depth-bounded
searches do not lead to a significant additional improvement.

This paper has highlighted that task-set specific schedules
are only worthwhile in the special cases where CPUs are likely
to miss their opportunity to access memory. These only occur
when the memory latency is very small and the number of
CPUs is approximately equal to the average period between
memory access operations. However, in general, the benefit
of a task-set specific schedule is not very significant. For
large access time and num cpu cores, the improvement in
utilization will be less than 10%.

These findings can be stated with confidence because the
model used in this paper is idealized. For TDMA memory
bus scheduling, single-path tasks enable the use of simple but
effective greedy algorithms which come close to the results
of depth-bounded search (Table VI). Therefore, the results
presented here are close to the practical maximum for any
task set on any system with TDMA arbitration.

REFERENCES

[1] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conver-
sion of control dependence to data dependence. In Proc. POPL, pages
177–189, 1983.

[2] Alexandru Andrei, Petru Eles, Zebo Peng, and Jakob Rosen. Predictable
implementation of real-time applications on multiprocessor systems on
chip. In Proceedings of the 21st Intl. Conference on VLSI Design, pages
103–110, Jan. 2008.

[3] John Hennessy and David Patterson. Computer Architecture: A Quan-
titative Approach, 4th ed. Morgan Kaufmann Publishers, 2006.

[4] MRTC. WCET Benchmarks. http://www.mrtc.mdh.se/projects/wcet/
benchmarks.html.

[5] Marco Paolieri, Eduardo Qui nones, Francisco J. Cazorla, Guillem
Bernat, and Mateo Valero. Hardware support for wcet analysis of hard
real-time multicore systems. In The 36th International Symposium on
Computer Architecture (ISCA 2009), pages 57–68, Austin, Texas, USA,
20-24, June 2009. ACM.

[6] Christof Pitter. Time-predictable memory arbitration for a Java chip-
multiprocessor. In Proceedings of the 6th international workshop on
Java technologies for real-time and embedded systems (JTRES 2008),
pages 115–122, Santa Clara, USA, September 2008. ACM Press.

[7] Christof Pitter and Martin Schoeberl. Performance evaluation of a Java
chip-multiprocessor. In Proceedings of the 3rd IEEE Symposium on
Industrial Embedded Systems (SIES 2008), pages 34–42. IEEE, June
2008.

[8] Christof Pitter and Martin Schoeberl. A real-time Java chip-
multiprocessor. ACM Trans. Embed. Comput. Syst., 10(1):9:1–34, 2010.

[9] Peter Puschner and Alan Burns. A review of worst-case execution-time
analysis (editorial). Real-Time Systems, 18(2/3):115–128, 2000.

[10] Peter Puschner and Alan Burns. Writing temporally predictable code. In
Proceedings of the The Seventh IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS 2002), pages 85–94,
Washington, DC, USA, 2002. IEEE Computer Society.

[11] Jakob Rosen, Alexandru Andrei, Petru Eles, and Zebo Peng. Bus access
optimization for predictable implementation of real-time applications
on multiprocessor systems-on-chip. In Proceedings of the Real-Time
Systems Symposium (RTSS 2007), pages 49–60, Dec. 2007.

[12] Martin Schoeberl and Peter Puschner. Is chip-multiprocessing the end of
real-time scheduling? In Proceedings of the 9th International Workshop
on Worst-Case Execution Time (WCET) Analysis, Dublin, Ireland, July
2009. OCG.

[13] Xilinx. Microblaze processor reference guide. Manual UG081, Xilinx
Corporation, 2005.

