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Abstract

This report proposes the scratchpad memory management unit (SMMU)
to act as a perfect data cache for a known subset of the data used by a
program. This enables the execution time for each load or store operation
in the program to be precisely determined. The SMMU must be explicitly
controlled by the program, which commands the addition and removal of
objects from the SMMU and its associated scratchpad memory.

This report explains why the SMMU enables memories with high access
latency to be used efficiently within hard real-time embedded systems. It
describes the SMMU in abstract form, explaining how it solves the memory
latency and pointer aliasing problems and how programs could use it. Then,
it describes the implementation of a version of the SMMU for the Microblaze
processor, enabling SMMU experiments within real embedded systems. Lastly,
it conducts a case study involving a large C program to understand the costs
and benefits of the SMMU for real code. A memory profiler is used to detect
objects that can be usefully allocated within the scratchpad by identifying
their base pointers.

The implementation for Microblaze is found to be practical in terms
of clock frequency and logic area. The case study shows that the SMMU
capabilities cannot be applied to all variables, but the performance of the
SMMU within the functions being considered is within a factor of two of the
performance of a perfect data cache.

1. Introduction

Time-predictable execution of memory accesses (i.e. load
and store) is an important architectural feature for hard real-
time embedded systems. Hard real-time means that the worst
case execution time (WCET) for a task is guaranteed to be
less than or equal to its deadline [1]. WCET analysis estimates
an upper bound on the execution time of a task [2]. This upper
bound is never less than the true worst case: analysis must be
safe. It should also be as close as possible to the true worst
case (i.e. the analysis should be tight).1

This report describes challenges that affect the prediction
of memory access times in hard real-time embedded sys-
tems (sections 1.1-1.3). It lists the problems with previous
approaches (section 1.4). It suggests a solution for these
problems in the form of a scratchpad memory management
unit (SMMU) (section 2). The solution is implemented and
interfaced to a Microblaze soft CPU core (section 3), then
evaluated using an FPGA (section 4). A case study is carried
out to evaluate the effects of the SMMU on a large C program
(section 5). Section 6 gives a conclusion.

1. This work has been supported by the EMUCO and JEOPARD projects
which are funded by the European Commission Seventh Framework Pro-
gramme.

1.1. Data caches

Data caches [7] are present in most computers because of
the high latency of access to external memory. They store a
recently-used subset of memory elements, which is a severe
problem for WCET analysis as the execution time of most
memory accesses is dependent on the preceding reference
string [8]. This is the sequence of memory addresses that
have been used by the program. The timing of a load or store
operation depends on the relationship between its effective
address and the effective addresses of earlier operations. The
time cost of a cache miss is high due to the latency of external
memory accesses (Table 1).

Conventionally, WCET analysis for data caches aims to
identify where misses cannot occur, since the pessimistic
assumption that all accesses result in a cache miss will result
in a WCET estimate that is safe but not tight. However, WCET
analysis must account for all possible data cache behaviours,
even though these may be dependent on input data. WCET
analysis has always accounted for data dependence at the level
of the program structure, because the input data will select
a particular path through a program [9]. Data caches force
WCET analysis to account for a lower-level form of data
dependence, since the effective address used by any access
could affect the timing of any future access. A related issue
is conflict misses [7], which occur when one object (memory
area) competes with another for a cache line. Conflict miss
behaviour is entirely dependent on the lower-order bits of the
effective addresses being used.

This data dependence limits accurate (tight) WCET analysis
to systems without data caches or programs in which most
addresses are predictable before execution starts [10]. When
the effective address of a load or store is data-dependent
in some way, the memory access operation is said to be
dynamic [11], and its effect on the data cache is unknown.
Dynamic accesses need to be either eliminated, or identified
so that the data cache can be bypassed when they execute [12].
Otherwise, they will leave the data cache in an unknown state.
In this form of analysis, a program will not benefit from the
data cache if all of its memory accesses are dynamic. A high
execution time must be assumed for every dynamic load or
store operation.

Time-predictable computer architectures [13]–[16] attempt
to offset these issues by changing computer hardware. For



System Direct Cache hit Cache miss CPU speed
(time in clock cycles) (MHz)

ARM PB11MPcore [3] 79 1 97 300
StrongARM-110 [4] 17 1 24 50
PPC 405 (FX12) [5] 33 1 41 100

Microblaze (ML505) [6] 31 1 38 125

TABLE 1. Measured worst-case execution time for a load operation on four embedded systems in clock cycles, if the cache is bypassed
(Direct), and in the event of a cache hit and a cache miss.

example, different classes of data can be directed to different
data caches, such as a stack cache, a static (global variable)
data cache, and a heap data cache [17]. This is helpful because
the reference string for each class can be considered separately,
and different cache hardware can be used appropriately for
each class. For example, a fully associative cache is used for
heap data [7] in order to solve the conflict miss problem. How-
ever, the high area and energy cost of the content-addressable
memory (CAM) required for such caches [18] sets a strict limit
on the size. This does not eliminate other problems caused
by a data-dependent reference string, although a solution is
proposed for the stack cache, where cache misses are only
permitted during operations that move the stack frame (e.g.
“return”).

The restrictions imposed by WCET analysis for data cache
analysis can be justified by observing that WCET analysis is
only necessary for hard real-time tasks. These are a special
case. Some hard real-time programs do not use dynamic
accesses at all [19]. Others rarely use them [12]. It is doubtful
that this trend will continue. Java is now a popular language for
programming real-time systems [15]. Being object-oriented,
it relies heavily on dynamic references created by the new

keyword. A Java programmer would have to make a special
effort to write code without dynamic references, which would
negate the advantages of using Java in the first place.

1.2. Data Cache Partitioning and Locking

Cache partitioning [20] and cache locking [21] have been
suggested as ways to improve the time-predictability of cache
accesses. Both involve disabling the cache update mechanism
for parts of the cache, reducing the number of possible cache
states that must be considered during WCET analysis.

Partitioning [20] approaches divide a cache into subsections,
each of which is used exclusively by a single task in a multi-
tasking system. Partitioning improves time-predictability by
preventing interference between tasks: updates and accesses
are disabled for all but one cache subsection during each task.
This allows any single-task data cache analysis approach to be
used in a multi-tasking environment, but it does not simplify
any part of that analysis. Cache partitioning is orthogonal to
this report, which only considers a single task. A partitioning-
like process could be applied to the work described in this
report in order to allow it to be used with multiple tasks.

Cache locking [21] approaches disable the cache update
mechanism. Cache locking can be used to handle dynamic
accesses without disturbing the cache state [12], and it can also

be used to ensure that particular memory access operations
are cache hits, as data can be preloaded into a locked cache.
However, for a non-fully associative cache and more than one
object, the possibility of conflict misses must be considered
during preloading, since one preloaded object could evict
another from the cache. This limits the practicality of using
locked caches. The technology is well-suited to static data (e.g.
global variables) and stack data, but not dynamic references
and heap data.

1.3. Scratchpads

Researchers have been considering scratchpad technology
as an alternative to data caches for hard real-time embedded
systems [22], [23]. Scratchpads are small on-chip memory
areas that may be used in place of instruction or data
caches [24]. Accesses to scratchpad are always as fast as data
cache hits. There is no equivalent of a cache miss. Hence,
scratchpads offer a time-predictable replacement for a cache.
Crucially, the behaviour of the scratchpad is independent
of the reference string. The time taken for a load or store
operation can be computed offline (before execution) just by
knowing whether its address will be in scratchpad or not, so
scratchpads effectively act as perfect data caches for a known
subset of the memory accesses in a program. Accesses outside
the scratchpad are direct accesses to external memory: these
incur a large time penalty that is similar to a cache miss (Table
1).

The advantage of scratchpads is not limited to simplification
of analysis. Even if data cache WCET analysis were possible
without the restrictions used in [10]–[12], there would be a
large variance between the best case (or average) execution
time and the WCET due to the possibility of conflict misses.
Scratchpads do not have this problem. The memory access
latency is fixed, so the best case, average, and worst case
execution times can be identical.

However, scratchpads place an additional burden on the
programmer, compiler, or WCET optimisation tool, because
something must decide which objects will be stored in scratch-
pad, and which will be kept in the external memory. This
decision needs to be made offline because it affects the WCET.

In principle, any item of data can be stored in the scratchpad,
but only by explicitly managing the computer’s resources
within a program. Techniques such as overlay program-
ming [25] are historical approaches for this. Overlay pro-
gramming typically makes use of a procedure that copies data
between one type of memory and another; memcpy would be



suitable. Overlay programming can be time-predictable [26],
but it is specific to one platform and places an extra burden
on the programmer, who must state when data should be
moved between the external memory and the scratchpad (or,
historically, the backing store and the main store).

1.4. Automatic Scratchpad Allocation

Researchers have proposed ways to allocate scratchpad
space automatically and transparently to the programmer, e.g.
as a post-compilation step. Static schemes provide a single
allocation map for an entire program [23], while dynamic
schemes allow the allocation map to change [22], [27].
The dynamic schemes make better use of limited scratchpad
space [28]; static schemes are generally only suitable for small
programs. The dynamic approaches partition the program into
regions, each with a local scratchpad memory map. Data is
moved by software between scratchpad and external mem-
ory whenever execution crosses from one region to another.
Region boundaries may be formed at loop entrances and
exits [28] or at procedure entrances [27].

Unfortunately, all time-predictable scratchpad management
schemes currently lack support for pointers. They sup-
port static and stack data including arrays and scalar vari-
ables. These are automatically allocated between scratchpad
and external memory with the intention of minimising the
WCET [22], [23].

Data-dependent accesses are permitted if they only reference
static and stack data, since the reference string has no effect on
the scratchpad contents. This is an improvement on the use of
data caches, even if multiple data caches are used for different
classes of data [17]. However, dynamic memory allocation
is not permitted, and a pointer is only permitted if whole-
program pointer analysis can identify every variable that might
be addressed [22]. There are four reasons for these restrictions:

1) Timing. If a pointer could point to any object, it might
reference the scratchpad or the external memory depend-
ing on the pointer value. In [22], restrictions ensure that
every memory access operation can be guaranteed to
reference either external memory or scratchpad.

2) Invalidation. Pointers might become invalid when a re-
gion boundary is crossed. Consider a pointer to an object
in scratchpad; that pointer will become invalid when the
object is unloaded, because the object has moved to a
new address in external memory. In [22], whole-program
pointer analysis identifies all of the variables that might
be used by each memory access operation in order to
avoid this.

3) Sizing. The objects referenced by pointers always have
a known size at runtime, but sometimes it is hard to
compute the size offline, e.g. if an object is dynamically
allocated. The size needs to be known in order to (1)
reserve scratchpad space, and (2) determine the time
taken to copy an object between the scratchpad and
external memory. In [22], pointers can only reference

static or stack objects, each of which has a fixed size
that is determined by the compiler.

4) Aliasing. When two different pointers contain the same
value (i.e. they refer to the same object), they are
said to be aliases. Aliases are a problem in compiler
design [29] and in high performance CPU design [30],
but the scratchpad case is worse than either of these well-
known cases, because aliases can allow the same data
item to exist in two separate scratchpad locations. Since
accesses to one of these locations do not update the
other, aliasing will cause incorrect behaviour. [22] relies
on whole-program pointer analysis to identify aliases
and ensure that all refer to the same physical location.

To the authors’ knowledge, only one dynamic scratchpad
management scheme has full support for pointers and heap
data. Udayakumaran, Dominguez and Barua [27] propose an
extension for the C runtime implemented by malloc along
with new compiler functionality. Their version of malloc

is able to allocate memory in either scratchpad or external
memory.

Profiling is used to gather data about the number of accesses
to each object. The profiler traces each object to its allocation
point (the place in the code where malloc was called). Each
allocation point is assigned a slice of the scratchpad space: the
size of this slice depends on the estimated benefit of allocating
scratchpad space at that point. At runtime, malloc allocates
space from this slice of the scratchpad memory first. If more
space is needed, it is allocated in external memory. This is
a solution to the aliasing problem, because each object has a
single location that is fixed by malloc.

The program is also partitioned into regions, each with a
different set of objects to be loaded into scratchpad. When
an object is not loaded into scratchpad, it cannot be accessed,
and all pointers to it are invalid. Udayakumaran’s software
applies whole-program pointer analysis to the statically linked
program binary in order to ensure that each object is not
accessed outside the valid region. It is assumed that analysis
will find every possible access to each object: unidentified
accesses would introduce run-time errors.

Udayakumaran’s scheme is not suitable for hard real-time
tasks because its performance depends on decisions that are
made during execution. It is not possible to be certain that a
particular memory operation will refer to scratchpad memory,
because (1) a number of different pointers could be used, and
(2) any of those pointers could refer to either scratchpad or
external memory.

2. Scratchpad Memory Management Unit

The scratchpad memory management unit (SMMU) pro-
vides a time-predictable subsystem for memory access in
which every load or store operation can have a precisely known
WCET regardless of the preceding reference string. Unlike
previous solutions for data scratchpad management, pointers
are fully supported. Pointer aliasing and pointer invalidation



unsigned s t r l e n ( c o n s t char ∗ s )
{

unsigned i ;
unsigned e1 = OPEN ( s , 100 , 0 ) ;
f o r ( i = 0 ; ∗s != ’\0 ’ ; i ++ , s ++ ) {}
CLOSE ( e1 ) ;
re turn i ;

}

Figure 1. Programmer-directed usage of OPEN and CLOSE.

are solved problems. Whole-program pointer analysis is un-
necessary. The timing of SMMU operations is not dependent
on input data or the values of pointers.

Briefly, the SMMU allows a program to “OPEN” (map) and
“CLOSE” (unmap) objects that are stored in external memory.
An object that is OPENed can be accessed quickly. OPENed
objects form a subset of the program’s data, and all accesses
within that subset are guaranteed to be serviced as fast as cache
hits. The SMMU acts as a perfect data cache for the subset.
This property is retained until the objects are CLOSEd.

The SMMU is linked to both scratchpad space and external
memory. The scratchpad space is initially unused. OPENing
an object reduces the latency of each access at the cost of (1)
scratchpad space and (2) copy operations that move data from
external memory to scratchpad, and back again when CLOSE
is called. OPEN does not change the address of the object. It
causes the object to be copied to scratchpad, and then added
to a table of address mappings so that subsequent accesses to
the object are redirected to the scratchpad. CLOSEing is the
reverse process. It is expected that OPEN and CLOSE will
be added to a program by an algorithm in order to minimise
the program’s WCET. This algorithm will ensure that space
is always available for each OPEN operation by planning
memory usage offline.

The innovative aspects of the SMMU are (1) the address
remapping table and its implementation in hardware, and (2)
the mechanism that ensures correct behaviour when mappings
overlap, which is caused by pointer aliasing. Pointer invalida-
tion is solved by never requiring pointers to change: an object
has the same address if it is mapped or unmapped. The SMMU
forms part of a basis for building time-predictable computer
systems that facilitate WCET analysis but can be used with
any C code.

2.1. Example: OPEN and CLOSE

OPEN and CLOSE are used to map and unmap objects
in the scratchpad. A programmer can use these operations di-
rectly. In Figure 1, the C function strlen is modified to make
use of the SMMU. The object addressed by s is mapped into
scratchpad by the OPEN operation, and unmapped by CLOSE.
In Figure 1, OPEN and CLOSE might be implemented by
inline functions or preprocessor macros; they would carry out
their functions by memory-mapped IO, special instructions, or
via a co-processor interface.

2.2. Solution for Sizing Problem

All accesses performed by a C program can be decomposed
into the form of a base pointer plus an offset. The base
pointer is invariant; it points to the beginning of the object
being accessed. It is the offset that changes, either because
of an array subscript (e.g. a[x]), or because a pointer to the
object is modified (e.g. ++a). In either case, the base pointer
is unchanged.

It is the base pointer that should be passed to the OPEN or
CLOSE operation. Representing accesses in the form of base
pointer + offset has been useful to earlier research where the
base pointer value is effectively irrelevant to analysis [31]. It
is very useful to be able to ignore data-dependent base pointer
values during WCET analysis. The SMMU behaviour is the
same regardless of the base pointer’s value.

However, the SMMU operations also need to know the size
of the object being mapped. The offset will be bounded by
the size in a correct program [32], so the size is needed: the
SMMU must know how much data to copy during OPEN and
CLOSE.

The object addressed by a base pointer a can have any
size, even if a has not been allocated on the heap (e.g. by
malloc). Dynamic allocation is also possible on the stack (e.g.
by alloca), and a might point to one of several different static
array variables. Sometimes, a can be traced to a particular
source with complete accuracy [11], but this is not possible in
general. Even if malloc is not used, the compiler and WCET
analysis tool may not know the size of a.

This problem is similar to the issue of loop bounds within
hard real-time tasks. Loop bounds are needed for WCET
analysis [9] and may be obtained automatically in some
cases [33], but the programmer is usually expected to specify
them using code annotations. The same applies to object
sizes: in general, the programmer must specify them, but in
some cases they could be obtained automatically. For instance,
object sizes could sometimes be derived from loop bounds, as
in the case of an iteration through the elements of an array.

2.3. Solution for Pointer Aliasing Problem

The solution to the scratchpad pointer aliasing problem is
to give the program a logical address space where pointers are
never required to change. OPEN loads objects into scratchpad
without changing the logical address - although the working
copy of the object may move to a different physical location,
its location from the program’s perspective is unchanged.
Thus, two aliases still refer to the same place.

Logical addresses are also used in virtual memory sys-
tems [8], so the time-predictability of the solution described
here must be emphasised. In a typical virtual memory system,
page faults are triggered whenever the data at a logical address
is not present in physical memory. In the SMMU system there
are no page faults, because the data at every logical address is
present in external memory or scratchpad. Memory accesses
via the SMMU will always be time-predictable.
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Figure 2. Scratchpad memory management unit (SMMU) hardware

2.4. Solution for Timing and Invalidation Problems

The SMMU also solves the timing and invalidation prob-
lems discussed in section 1.4. Every memory access operation
can be classified offline as either “scratchpad” or “external
memory”. This can be done by tracing the base pointer that
is being used.

If the base pointer has been OPENed, then the access
always uses the scratchpad. Otherwise, it may use the external
memory: it might use the scratchpad if an alias of the base
pointer happens to be mapped to scratchpad. An SMMU
implementation has a choice of strategy for the latter case,
as it can serve the access quickly, or insist that it must always
take exactly as long as it would take if external memory
needed to be used. The second option might be necessary in
systems where memory accesses need to be fully deterministic
(e.g. [34]–[36]). This would require new opcodes for “slow”
memory accesses.

The invalidation problem is solved by the use of logical
addresses. Pointers are not invalidated by OPEN and CLOSE:
regardless of an object’s physical location, its logical address
is the same.

2.5. Abstract SMMU Hardware

Figure 2 shows part of the internal structure of the SMMU.
Logical addresses (m bits wide) are generated by the CPU
and received on the left of Figure 2. They are compared to the
SMMU table (A) which contains 2n groups of the following
registers:
• minimum: minimum logical address of the object.
• maximum: minimum address plus the object size.
• offset: the value to be added to a logical address to convert

it into a physical address in scratchpad memory.
• valid: a single bit that is 1 for valid table entries.

An incoming address matches if it is between minimum and
maximum in one of the valid entries. If one of the 2n entries
matches, then the match output (B) is asserted. If two or more
match, then OPENed memory regions overlap. The highest-
numbered match is selected by a priority encoder (C) and
used as the n-bit select input for a multiplexer (D). This

gives the scratchpad address being accessed; it is passed to
the scratchpad memory (E).

2.6. OPEN and CLOSE operations

The SMMU implementation is more complex than illus-
trated in Figure 2, which does not show the hardware needed to
implement OPEN and CLOSE. The technical details of these
operations are given in Figure 5; they are complicated because
they consider the data which is already in scratchpad during
copy operations, assuring correct semantics when OPENed
memory areas overlap.

The OPEN operation takes three parameters: a base pointer,
a size, and a copy location. The object identified by the base
pointer is copied from external memory into the scratchpad.
The OPEN operation creates an entry in the table (Figure 2,
A). To use OPEN, the program must guarantee that there is
space for the copy and specify a physical location for it within
the scratchpad. OPEN has a maximum time bound which can
be computed as a function of the size parameter. It is perfectly
legal to have overlapping regions of memory open at the same
time: this has no effect on timing or program correctness.

For example, consider the program in Figure 3, which opens
two overlapping areas of memory (named Y and Z) from the
larger area X. Figure 4(a) shows how the expressions for i

and j are implemented by the scratchpad and SMMU after
the first OPEN. After the second OPEN, part of Y and Z
overlap. Figure 4(b) and (c) show how this affects accesses
to variables k, l and m. Two copies of the overlapping space
exist in the scratchpad, but only one is used (Y&Z).

If Y’s table reference is lower than Z, then Y takes priority
over Z. Accesses to the overlapping space (e.g. l = Z[1]) are
routed to the copy at the end of Y. The copy at the end of Z
is inaccessible (Figure 4(b)). Otherwise, Z takes priority over
Y. Z[1] is routed to the copy at the end of Z (Figure 4(c)).

The process that copies data in and out of scratchpad (Figure
5) respects this remapping. The second OPEN operation will
take data from the scratchpad copy of Y while processing the
overlapping region, so that any modification of that region
before the second OPEN will be preserved.



void example ( i n t ∗ X )
{

i n t ∗ Y ;
i n t ∗ Z ;

Y = & X [ 4 ] ;
OPEN ( Y , 7 , 0 ) ;
i = Y [ 1 ] ;
j = Y [ 6 ] ;

Z = & X [ 9 ] ;
OPEN ( Z , 7 , 7 ) ;
k = Y [ 1 ] ;
l = Z [ 1 ] ;

m = Z [ 6 ] ;
. . .

}

Figure 3. Example program for Figure 4.

The copy location for each OPEN operation may be spec-
ified by the programmer. However, this value should be
generated by a scratchpad allocation algorithm, which should
either be executed offline and directed by WCET analysis
(section 2.7) or during execution by a time-predictable algo-
rithm (section 5.2). Scratchpad space could also be managed
dynamically by virtual memory techniques, but this would not
be time-predictable, so the topic is not considered further in
this report.

The CLOSE operation takes one parameter: a table refer-
ence, as emitted by OPEN. It reverses the OPEN operation
associated with that reference, writing the scratchpad contents
back to external memory. CLOSE has a time bound that
depends on the object size. CLOSE respects overlapping
regions and will update them as necessary according to the
priority order defined by SMMU table. For example, if Z were
closed in Figure 4(c), the contents of the overlapping region
Y&Z would be written back to Y.

Table references are similar to file handles. Although they
define a priority order within the SMMU, they are opaque from
the perspective of the program. Each OPEN operation must
have a corresponding CLOSE, so the table reference returned
by OPEN is stored. C code that makes use of “unstructured”
programming techniques (e.g. longjmp, sigaction) must
be aware of this. Both OPEN and CLOSE are thread-safe,
provided that their internal operations are atomic. The issues
for multithreaded programs are that (1) each thread must avoid
using physical scratchpad space that could be used by other
threads, and (2) there is a global limit on the total number of
entries that can be OPEN at once.

2.7. SMMU/Scratchpad Allocation Algorithm

In general, manual modifications to a program (e.g. Fig-
ure 1) would be time-consuming and error-prone, requiring
changes in most functions just like early schemes for overlay
programming [25]. The SMMU could only be practical if
OPEN and CLOSE operations were generated automatically.
Existing scratchpad allocation algorithms can be extended
with the necessary features. Deverge and Puaut describe a

scratchpad allocation algorithm that supports static and stack
data [22]. Using the SMMU, this algorithm can also support
heap data referenced by pointers. The extensions that are
required are:
• Using OPEN and CLOSE to transfer data between exter-

nal memory and scratchpad. These replace a simple copy
operation.

• Placing a limit on the total number of objects that can be
in use simultaneously to match the size of the SMMU’s
translation table. This is an additional constraint in the
integer linear program (ILP) model.

• Replacing “variables” within the algorithm with “pointers
to objects”. In the Deverge algorithm, “variables” refer
to statically allocated objects (or objects on the stack),
which are either present throughout the program or
throughout a single function. In the SMMU version of
the algorithm, the same notion of a “variable” would be
applied to a “pointer to an object”, which would come
into existence when a base pointer was created, and leave
existence when that base pointer was overwritten. This
would destroy the 1-1 mapping between variables and ob-
jects, but the problems that this could introduce (pointer
aliasing, object sizing, pointer invalidation) would be
solved as described in sections 2.2-2.4.

Other parts of the algorithm would be retained, such as the
assignment of objects to locations in the scratchpad, and
the iterative process of WCET reduction that accounts for
changes in the worst-case execution path. A subsequent paper
will describe the effects of applying the modified Deverge
algorithm to various programs.

3. Implementation: SMMU For Microblaze

The SMMU can only be fully evaluated using a hardware
implementation. This section describes the addition of the
SMMU to the Microblaze soft CPU core [37]. The SMMU
replaces the Microblaze data cache. It acts as a data bus master.

3.1. Microblaze

Microblaze [38] is a 32-bit RISC-like soft CPU core sold
by Xilinx as part of the Embedded Development Kit (EDK)
software. It is commonly used within FPGA designs. Versions
of Linux exist for Microblaze [39], and the Xilinx Platform
Studio (XPS) software can be used to build entire embedded
systems using Microblaze and FPGA-based peripherals.

Microblaze HDL source code is available, but only at
considerable cost [40], so the SMMU can only make use of the
external interfaces provided by the core. Four types of external
bus interface are available, and three are wholly unsuitable
because they effectively require the presence of a data cache:
• The Processor Local Bus (PLB) interface [41] is well-

suited to high bandwidth links with peripherals and
memory.
PLB accesses have a high latency (16 clock cycles or
more). This setup cost is too high for PLB to be useful
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Figure 4. How accesses to overlapping OPEN objects are implemented by the SMMU and scratchpad.

for instruction or data access, because such accesses will
limit the CPU speed to the bus latency. PLB serves these
purposes only through the use of instruction and data
caches.

• The On-chip Peripheral Bus (OPB) interface [41] is also
unsuitable for the SMMU for the same reasons as PLB.

• The Xilinx Cache Link (XCL) interface [38] is designed
to be used to fill instruction and data caches, and cannot
be used without them. For this reason, it is unsuitable for
the SMMU.

3.2. Local Memory Bus (LMB)

Fortunately, the fourth type of bus interface is suitable. This
is the Local Memory Bus (LMB). The interface is shown in
Table 2. Since LMB allows single-cycle access to memory, an
LMB-based implementation of the SMMU is just as effective
as an SMMU implementation integrated into Microblaze.

LMB is a very simple bus. An example of its use can be
seen within the lmb_bram_if_cntlr component distributed
with EDK: the VHDL source is available for this IP core. This
component connects an FPGA block RAM to Microblaze for
use as a scratchpad, boot ROM, or as the only memory in
small systems. It responds to memory requests in a single
clock cycle, i.e. during clock cycle n, Microblaze loads valid
information onto its outputs, including LMB_ABus. It asserts
LMB_AddrStrobe to indicate that a memory operation should
proceed. lmb_bram_if_cntlr decodes these during clock
cycle n; by the rising clock edge, it has already decided
whether the address is within the range of the block RAM, and
whether the write and enable inputs of the block RAM should
be asserted. If the address was within range, then the Sl_DBus
output will be valid in clock cycle n+1. The Sl_Ready output
will also be asserted for clock cycle n + 1, indicating that the
transaction is complete. The CPU can begin a new access
immediately; this will complete in clock cycle n + 2.

Address decoding is performed within
lmb_bram_if_cntlr. Additionally, Microblaze will
wait indefinitely for Sl_Ready, provided that no other data
bus is in use. If PLB or OPB is also present, then their
timeout signals can cause LMB accesses to be cancelled.
Microblaze sends a data request along all available buses
simultaneously, and assumes that the LMB will respond first

if able. These facts make LMB an ideal interface for the
SMMU, because the SMMU can cover the entire address
space and it might carry out very long transactions (such as
an OPEN of hundreds of words).

3.3. Xilinx Platform Studio and EDK

lmb_bram_if_cntlr is a component provided in Xilinx
Platform Studio (XPS) “pcores” format. This format combines
VHDL or Verilog source with metadata to describe the bus
interfaces and configuration parameters. It is the format used
by Microblaze and all the peripherals supported by XPS.

XPS considers components at the bus level. The user
specifies a bus structure using a GUI or a text file. Then, XPS
generates the necessary VHDL to connect the components
together. Users can build embedded systems without needing
to write any VHDL.

Microblaze can be interfaced to other components using
pure VHDL, but it is easiest to make the bus connections
within XPS, not least because Microblaze is only one part
of the system - IO peripherals (e.g. UARTs) and an external
memory controller will also be required.

The simplest way to implement the SMMU is as an XPS
component, with an LMB slave interface on one “side”, and
a PLB master interface on the other. The LMB interface will
connect to Microblaze, while the PLB interface will connect
to IO peripherals and external memory. This means that the
implementation task is limited to the SMMU; existing Xilinx
components can be relied on to provide all other system
features.

3.4. Implementation - Stage 1

The starting point for implementation is within XPS. The
“Create and Import Peripheral Wizard” is able to generate
template components with PLB interfaces. These components
always have a slave interface, but a master interface is also
required because the SMMU must be able to initiate memory
transactions.

In the first stage of implementation, the slave interface
provides control and status registers (Figure 6). These allow a
program running on Microblaze to initiate any of the SMMU
operations, which obtain parameters from the control registers,



Signal name Width Source Purpose
(bits)

LMB_Clk 1 system Bus clock
LMB_Rst 1 system Reset
LMB_ABus 32 CPU Address output from CPU
LMB_WriteDBus 32 CPU Data output from CPU
LMB_AddrStrobe 1 CPU Strobe: CPU outputs are valid
LMB_ReadStrobe 1 CPU Read operation flag
LMB_WriteStrobe 1 CPU Write operation flag
LMB_BE 4 CPU Byte lane enables (write only)
Sl_DBus 32 RAM Data input to CPU
Sl_Ready 1 RAM Strobe: Data input is valid

TABLE 2. Local memory bus (LMB) signal lines

and send results to the status registers. If the SMMU operates
incorrectly, e.g. returning invalid data, the program will not
crash. The program is only driving the SMMU through a test
framework instead of using it directly.

Implementation begins with a design that is only able to
LOAD and STORE (not OPEN or CLOSE). The design does
not need to include a scratchpad or the SMMU table (Figure
2); it consists only of a state machine.

3.5. Testing - Stage 1

The hardware design is tested by a Microblaze program that
tests functionality through device driver routines (Figure 7).
At this stage, the hardware only supports LOAD and STORE
operations, so the test process is typical of memory testing
techniques. It reads and writes data from memory, and ensures
that the LOADed data matches expectations.

3.6. Implementation - Stage 2

The next stage is to add support for OPEN and CLOSE. This
is a substantial extension to the SMMU component, since the
table and scratchpad must both be added.

The table is implemented as shown in Figure 2 and Figure 5.
The scratchpad is implemented using four FPGA block RAMs,
one for each byte lane. This gives 16kbytes of scratchpad
space. Larger scratchpads would be a trivial extension pro-
vided that the new size is a power of two. Smaller scratchpads
would be non-trivial because block RAMs have a fixed size.

OPEN and CLOSE are implemented as extensions to the
state machine. They use the burst transfer mode of PLB to
copy up to sixteen words in a single transaction; this is the
maximum for PLB in the default configuration.

3.7. Testing - Stage 2

OPEN, CLOSE, LOAD and STORE can be tested by
comparison with a software model of the SMMU (e.g. Figure
5). This verifies that the hardware implementation matches
the software specification. The software model can also be
validated at the same time, since the SMMU has well-defined
behavioural semantics:
• Memory accesses go to external memory (and complete

slowly) unless the logical address matches in the SMMU

table, in which case they are redirected to scratchpad and
complete quickly.

• The data at each logical address is the same, regardless
of whether that address is OPEN or not.

• The SMMU semantics hold even if two or more mapped
regions overlap, regardless of the order of OPEN and
CLOSE operations.

• (Implicit) No part of the scratchpad or external memory
is corrupted by SMMU activity.

The first round of tests check the SMMU behaviour by
generating many different arrangements of overlapping objects
taken from the basic patterns shown in Figure 8.

The test controller modifies, loads and unloads each of the
objects in a random order, thousands of times for each test
pattern. This exposes any edge cases which introduce data
corruption. Each test pattern can be scaled for any number
of objects and any size of object. In each case, memory is
modified before an OPEN or CLOSE, and then read back
afterwards to check that the hardware arrangement matches a
software model of expectations. Errors such as data corruption
in the scratchpad or external memory will manifest themselves
as differences between software and hardware. Incorrect be-
haviour with overlapping data is also swiftly detected when
objects are OPENed or CLOSEd.

Test patterns such as those shown in Figure 8 could mask
some errors by limiting the conditions that are checked, so
a second test phase generates OPEN, CLOSE and STORE
operations entirely at random, periodically comparing the
outputs of hardware and software models of the SMMU. This
test uses a “shadow” copy of the logical address space to check
the result of any LOAD, detecting data corruption.

For this test, the “external” and second memory sizes were
512 words, and the scratchpad memory size was set at 64
words. (These arbitrary choices keep the overall size small
enough to make errors easy to detect.) Ten million test cycles
were performed, each consisting of the following three phases:

1) An OPEN or CLOSE operation with valid parameters,
i.e. valid copy location, address and size in the case of
OPEN, and a valid reference in the case of CLOSE.
The valid copy locations are obtained by maintaining
a list of free blocks within the scratchpad similar to
malloc. In practical programs, this approach would not
be time-predictable, so allocations would need to be



PROCEDURE OPEN (
b a s e p o i n t e r : ADDRESS ,
s i z e : WORD ,
c o p y l o c a t i o n : ADDRESS )

: t a b l e r e f
VAR r e f : t a b l e r e f ;
BEGIN

r e f := INVALID ;
FOR i := 1 TO n u m e n t r i e s
DO

IF NOT t a b l e [ i ] . v a l i d
THEN

r e f := i ;
END;

END ;

RAISE EXCEPTION IF r e f = INVALID ;

FOR i := 0 TO s i z e − 1
DO

sc ra tchpad memory [ i + c o p y l o c a t i o n ] :=
LOAD ( i + b a s e p o i n t e r ) ;

END ;

t a b l e [ r e f ] . v a l i d := TRUE ;
t a b l e [ r e f ] . minimum := b a s e p o i n t e r ;
t a b l e [ r e f ] . maximum := b a s e p o i n t e r + s i z e ;
t a b l e [ r e f ] . o f f s e t := c o p y l o c a t i o n − b a s e p o i n t e r ;

RETURN r e f ;
END OPEN;

PROCEDURE CLOSE (
r e f : t a b l e r e f )

VAR d a t a : WORD;
BEGIN

RAISE EXCEPTION IF NOT t a b l e [ r e f ] . v a l i d ;

FOR i := 0 TO t a b l e [ r e f ] . s i z e − 1
DO

d a t a := sc ra tchpad memory [ i +
t a b l e [ r e f ] . o f f s e t +
t a b l e [ r e f ] . minimum ] ;

STORE ( i + t a b l e [ r e f ] . minimum ,
d a t a , r e f ) ;

END ;
t a b l e [ r e f ] . v a l i d := FALSE ;

END CLOSE ;

PROCEDURE STORE (
a d d r e s s : ADDRESS ,
d a t a : WORD ,
s e a r c h l i m i t : WORD := n u m e n t r i e s )

VAR r e f : t a b l e r e f ;
BEGIN

r e f := INVALID ;
FOR i := 1 TO s e a r c h l i m i t
DO

IF ( t a b l e [ i ] . v a l i d
AND ( t a b l e [ i ] . minimum <= a d d r e s s )
AND ( a d d d r e s s < t a b l e [ i ] . maximum ) )
THEN

r e f := i ;
END;

END ;

IF r e f = INVALID
THEN

main memory [ a d d r e s s ] := d a t a ;
ELSE

sc ra tchpad memory [ a d d r e s s
+ t a b l e [ r e f ] . o f f s e t ] := d a t a ;

END ;
END STORE ;

Figure 5. Pseudocode for SMMU operations. LOAD is omitted for
space reasons; its differences from STORE are trivial.

# d e f i n e STATUS ACTIVE ( 1 << 29 )
# d e f i n e STATUS TRIGGERED ( 1 << 28 )
# d e f i n e CONTROL READ ( 1 << 0 )
# d e f i n e CONTROL WRITE ( 1 << 1 )
# d e f i n e CONTROL OPEN ( 1 << 2 )
# d e f i n e CONTROL CLOSE ( 1 << 3 )

t y p e d e f s t r u c t R e g s t r u c t {
unsigned a d d r e s s ;
unsigned s t a t u s ;
unsigned c o n t r o l ;
unsigned d a t a ;

} Reg ;

s t a t i c v o l a t i l e Reg ∗ r e g = ( Reg ∗) 0 x60000000 ;

Figure 6. The early implementations of the SMMU provide memory-
mapped control and status registers to allow programs to test the
SMMU features without depending on the SMMU for data access.

s t a t i c unsigned Await Done ( void )
{

unsigned x ;
whi le ( r e g −> s t a t u s & STATUS ACTIVE) {}
x = r e g −> d a t a ;
r e g −> c o n t r o l = 0 ;
re turn x ;

}

unsigned HW LOAD ( unsigned a d d r e s s )
{

r e g −> a d d r e s s = a d d r e s s ;
r e g −> c o n t r o l = CONTROL READ ;
re turn Await Done ( ) ;

}

void HW STORE ( unsigned a d d r e s s ,
unsigned d a t a )

{
r e g −> a d d r e s s = a d d r e s s ;
r e g −> d a t a = d a t a ;
r e g −> c o n t r o l = CONTROL WRITE ;
Await Done ( ) ;

}

Figure 7. Device driver routines for LOAD and STORE operations
that are carried out via the SMMU. These use the registers listed in
Figure 6.
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unsigned HW OPEN ( void ∗ b a s e p o i n t e r ,
unsigned s i z e , unsigned c o p y l o c )

{
(∗ CONTROL) = ( s i z e << 16) | ( c o p y l o c & 0 x f f f f ) ;
re turn (∗ ( ( unsigned ∗) b a s e p o i n t e r ) ) ;

}

void HW CLOSE ( unsigned t a b l e r e f )
{

(∗ CONTROL) = 0 ;
(∗ MEMORY) = t a b l e r e f ;

}

Figure 9. OPEN and CLOSE protocols used by the final SMMU
implementation for Microblaze. Each OPEN or CLOSE operation is
preceded by a write to a memory-mapped control register. OPEN
operations are started by reads from memory (the address of the
read is the base pointer, and the data returned is the table reference).
CLOSE operations are started by writes to memory (the data is the
table reference).

planned offline. The address is generated randomly. The
size is also random but subject to available space.

2) 128 STORE operations to random logical addresses.
3) One LOAD operation for each logical address, checking

the result returned from the SMMU with the expected
value in the second memory.

These tests proved to be highly effective at detecting errors
that were deliberately introduced into the SMMU model to
verify the test process. These included not copying all words,
copying too many words, using addresses that were “off by
one” or delayed by a clock cycle, incorrect address compar-
isons, and providing invalid copy locations. In particular, the
software implementation shown in Figure 5 passes the tests,
and its behaviour matches the hardware implementation of the
SMMU.

3.8. Implementation - Stage 3

The final implementation stage is a direct LMB connection
between Microblaze and the SMMU. In this mode, the SMMU
must handle all data accesses from Microblaze. No other data
bus can be connected. If another data bus (e.g. PLB) is in use,
then one of the following issues will be introduced:
• The PLB transaction initiated by Microblaze will block

the PLB transaction initiated by the SMMU. This occurs
if one PLB is shared between them.

• Accesses to an address X initiated by Microblaze will
time out on PLB before the SMMU has been able to
complete the transaction. This timeout will cancel the
LMB transaction. This occurs if X cannot be serviced in
the PLB memory space, because X is outside the address
range of all peripherals.

• Accesses to an address X initiated by Microblaze will
be completed on PLB before the SMMU has been able
to complete the transaction. This completion will cancel
the LMB transaction. This occurs if X can be serviced in
the PLB memory space, because X is within the address
range of some peripheral.

The second and third issues have a “catch 22” nature - both
courses of action still lead to failure for OPEN, CLOSE
and some LOAD and STORE operations. This is solved by
disconnecting all data buses from Microblaze except for LMB.

An LMB interface is added to the SMMU. It replaces the
control registers; the status registers are retained for testing
purposes. The Microblaze CPU is able to directly carry out
LOAD and STORE operations in the usual way2, and if the
effective addresses fall within a memory range that is OPEN,
then they are redirected to scratchpad and serviced quickly.
Otherwise, they are sent to external memory via PLB. The
program running on Microblaze is also able to carry out OPEN
and CLOSE operations via the protocol shown in Figure 9.

The Xilinx tools will prevent the connection of
unofficial LMB hardware to Microblaze unless the
IGNORE_CUSTOM_LMB_IP_ERROR override is set within
the Microblaze metadata. The reason given by Xilinx is
that LMB hardware can reduce the maximum frequency of
Microblaze, which can be a problem (section 4.1).

3.9. Testing - Stage 3

The final testing stage is the replacement of the LOAD and
STORE device driver routines (Figure 7) with direct accesses
to memory, and the use of the OPEN/CLOSE protocol (Figure
9). This allows the test programs of section 3.7 to operate the
SMMU without using memory-mapped registers for LOAD
and STORE. They run exactly as an SMMU-aware program
would (e.g. Figure 1). This completes implementation of the
SMMU for Microblaze.

4. Evaluation: SMMU Hardware

In this section, the SMMU design for Microblaze is evalu-
ated. The functionality was extensively tested during develop-
ment (sections 3.5, 3.7 and 3.9), so this section concentrates
on evaluation of the other properties of the SMMU.

4.1. Critical Path

The third stage of implementation reveals an important fact
about both Microblaze and the SMMU. The address output
of Microblaze is directly sourced from the arithmetic/logic
unit (ALU) as the critical path information shown in Figure
10 reveals3. The critical path is the physical path through
combinational logic that has the greatest propagation delay. It
defines the maximum frequency of the design, because higher
frequencies may lead to incorrect behaviour as logic signals
fail to reach their destinations on time.

The critical path through the SMMU passes through a com-
parator (i.e. “less than”), a priority encoder and a multiplexer.

2. That is, using opcodes such as lbu, sw, etc.
3. The timing information in Figure 10 is estimated; the Xilinx toolset

cannot produce exact timings until the place and route phase of FPGA
synthesis. However, in recent versions of the Xilinx toolset, these numbers
provide a reasonable guide to the final propagation delay.



Clock period: 9.531ns (frequency: 104.916MHz)
Delay: 9.531ns (Levels of Logic = 39)
Source: microblaze_0/microblaze_0/Performance.Decode_I/EX_ALU_Op_0 (FF)
Destination: scache_0/scache_0/USER_LOGIC_I/scache/lane_gen[3].lane_block.scratchpad (RAM)
Source Clock: clock_generator_0/clock_generator_0/PLL0_CLK_OUT<0> rising
Destination Clock: clock_generator_0/clock_generator_0/PLL0_CLK_OUT<0> rising

Data Path: microblaze_0/microblaze_0/Performance.Decode_I/EX_ALU_Op_0
to scache_0/scache_0/USER_LOGIC_I/scache/lane_gen[3].lane_block.scratchpad

Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name)
---------------------------------------- ------------
FDRE:C->Q 34 0.471 0.838 microblaze_0/Performance.Decode_I/EX_ALU_Op_0
LUT4:I1->O 0 0.094 0.000 microblaze_0/Performance.Data_Flow_I/ALU_I/ex_subtract_op1
MUXCY_L:DI->LO 1 0.362 0.000 microblaze_0/,,,Use_Carry_Decoding.CarryIn_MUXCY
MUXCY_L:CI->LO 1 0.026 0.000 microblaze_0/...Not_Last_Bit.MUXCY_I
... 26 identical lines omitted ...
MUXCY_L:CI->LO 1 0.026 0.000 microblaze_0/...Not_Last_Bit.MUXCY_I
XORCY:CI->O 8 0.357 1.011 microblaze_0/...Not_Last_Bit.XOR_I
LUT5:I0->O 2 0.094 0.581 scache_0/USER_LOGIC_I/ctrl_mode_not0001111
LUT4:I2->O 3 0.094 0.491 scache_0/USER_LOGIC_I/ctrl_select_SW0
LUT6:I5->O 29 0.094 0.916 scache_0/USER_LOGIC_I/ctrl_select
LUT4:I0->O 2 0.094 1.074 scache_0/USER_LOGIC_I/lmb_we_3_and00001
LUT6:I0->O 1 0.094 1.069 scache_0/USER_LOGIC_I/scache/match196_SW3
LUT6:I0->O 4 0.094 0.352 scache_0/USER_LOGIC_I/scache/cpu_side_write_0
RAMB16:WEA0 0.624 scache_0/USER_LOGIC_I/...scratchpad
----------------------------------------
Total 9.531ns (3.200ns logic, 6.331ns route)

(33.6% logic, 66.4% route)

Figure 10. The critical path through the SMMU hardware also passes through the Microblaze ALU, resulting in a maximum frequency of
104.9MHz on the ML505 FPGA prototyping board [6].

In stages 1 and 2 of SMMU implementation, the source of the
signals is a control register and the destination is the address
input of a block RAM (Figure 11(a)). When the Microblaze
is introduced, the source of the address is the ALU rather
than a register (Figure 11(b)). This means that the critical
path is greatly extended, lowering the maximum frequency of
the design. On the ML505 FPGA prototyping board, the new
maximum frequency becomes 104.9MHz with a 16 entry table
(Figure 10).

This is a serious problem. A conventional cache implemen-
tation would not face this issue because the address input
could be sent directly to two block RAMs, one for the tag
memory and another for the cache contents. The Microblaze
manual suggests that this arrangement is used [38]. In both
the conventional design and the SMMU, the decision of “hit”
or “miss” does not have to be sent to the CPU until the next
clock cycle after the request is made. However, the SMMU
needs the “match”/“no match” decision on the same clock
cycle so that the physical address can be computed. This is a
disadvantage of the SMMU when combined with Microblaze,
because there is no register between the ALU and the effective
address output.

There is a simple workaround: reduce the CPU clock
frequency, e.g. to 100MHz on the ML505 prototyping board.
Another workaround would introduce a register between the
address input and the SMMU table. This pipelining approach
splits each memory access into two stages: (1) address com-
putation (within the ALU), and (2) table lookup (within the
SMMU). This increases memory latency by one clock cycle,
making the SMMU access latency twice that of a data cache.

Eliminating the problem is a question of CPU design. In a

classical RISC design, a pipeline register may be present be-
tween the EX stage (where the effective address is computed)
and the MEM stage (where memory access is performed); for
example, this can be seen in [42] chapter six. Microblaze does
not do this because block RAMs are synchronous memory. It
uses the registers within the FPGA block RAMs in place of
the EX/MEM pipeline register. If it were possible to replace
the MEM/WB pipeline register instead, then the SMMU
could operate at full speed (Figure 11(c)). Future work could
investigate this topic: in principle, the SMMU can be attached
to any CPU, but some designs may be better suited than others.

Another way to reduce the length of the critical path is
to simplify the SMMU design, e.g. by reducing the number
of logical address bits that are actually used, or the number
of table entries. The number of address bits and the num-
ber of table entries affect the maximum clock frequency as
shown in Figure 12(a). Large tables (32, 64 entries) have a
negative impact on the maximum frequency; an extra delay
exists because of the spacing between the elements and the
larger multiplexer. This delay could be reduced by additional
pipelining at the cost of higher access latency.

4.2. Logic Area

The FPGA model allows some reasoning about the size of
the SMMU device. Figure 12(b) shows how the size scales
with the number of table entries. The size is given in lookup
tables (LUTs), since these are the basic logic elements of a
Virtex-5 FPGA. This scaling is roughly proportional to the
table size. Again, fairly large tables (16, 32 entries) only
occupy a small percentage of the total FPGA space (28,800
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Figure 11. Critical paths: (a) the SMMU alone, (b) the SMMU and
Microblaze ALU, (c) the SMMU within an ideal CPU.

LUTs). However, the scalability of the table is similar to that
of a fully associative cache in that large numbers of entries are
impractical. There will be speed, area and energy advantages
to keeping the table size small.

The relationship between cache size and program perfor-
mance is relatively well understood [7], but the relationship
between SMMU table size and WCET is not clear. The size
of a data cache limits the amount of data that can be stored, but
the size of an SMMU table limits the number of objects that
can be OPEN. The question is not about the working set size of
a program, but about the number of objects in use at once. The
design of register files (typically limited to 16 or 32 entries)
suggests that the number of objects used simultaneously is

usually small, justifying a 16 or 32 entry table, which has a
relatively low cost. Further work will be needed to study the
relationship between the number of objects and the WCET of
typical programs.

4.3. Access Timings

Table 3 shows the timings for each SMMU operation,
assuming default PLB settings and that the external memory
is the static RAM present on the ML505 FPGA prototyping
board [6]. The timings are provided by the SMMU status reg-
ister (Figure 6). They demonstrate the importance of avoiding
direct access to external memory where possible, because the
majority of the transfer time is due to bus latency. Observe
the difference between copying 8 words and copying 16
words: once a burst transaction becomes active, one word is
transferred in a clock cycle. It is clearly better to copy n words
in a single transaction instead of n separate transactions. The
maximum PLB burst size is 16 words, so 32 and 64 word
transfers require multiple transactions.

5. Evaluation: C Programming Case Study

In this section, the SMMU is applied to various C functions.
The purpose is (1) to show how it could be used in a practical
context, and (2) to evaluate its performance in relation to more
conventional designs (e.g. a cache). As section 2.7 states, an
automatic scratchpad allocation algorithm is required for large-
scale use of the SMMU. However, on a small scale (e.g. single
functions) manual use of OPEN and CLOSE is practical.



SMMU Params. Clock
Op. cycles

STORE (scratchpad) 1
STORE (external) 19
LOAD (scratchpad) 1
LOAD (external) 31
OPEN 8 words 42

CLOSE 8 words 34
OPEN 16 words 50

CLOSE 16 words 42
OPEN 32 words 96

CLOSE 32 words 76
OPEN 64 words 188

CLOSE 64 words 144

TABLE 3. Timings for various SMMU operations on the ML505
prototyping board.

The study examines the reference JPEG library version
6b [43]. This is a good example of “legacy” C code. The
newest parts of the code base date from 1998; some parts
are at least ten years older than that. Despite this, libjpeg-
6b carries out a task that is still very practical, since mobile
embedded systems are often required to encode and decode
JPEG images (e.g. digital cameras, embedded web browsers).
The issues that turn up during the application of the SMMU
to this code are likely to reappear for any C code that has not
been specifically written for the SMMU or a hard real-time
embedded system.

Two functions are chosen to be supported by the SMMU
(with 16 table entries) and the associated scratchpad (size 16
kbytes). The relevant parts of the call tree are shown in Figure
13. The two functions account for most of the execution time
of libjpeg as it decodes a reference image:
• ycc rgb convert (∼42% of execution time4)

Converts image data stored as luminance and colour data
(YCC format) into RGB format for display on screen.

• decompress onepass (∼40% of execution time)
Carries out an inverse discrete cosine transform (DCT)
operation to turn compressed image data into pixel data.

Importantly, both of these functions use input and output data
via pointers. The JPEG library only uses globals to store
constants, and these are rarely accessed. The functions are
filled with data dependent accesses to the heap and stack that
could not be handled efficiently by previous techniques as
described in sections 1.1-1.3.

This study does not consider WCET, because the input
data is a fixed reference image. However, conventional WCET
analysis techniques could be applied because of the time-
predictability of the CPU and memory subsystem.

5.1. Microblaze/SMMU Simulator

During the early stages of this case study, it was apparent
that manual identification of base pointers is a non-trivial
problem. The OPEN operation expects to be given the base

4. These timings are from the Microblaze/SMMU simulator with the
SMMU disabled (section 5.1).

main

jpeg_read_scanlines

decompress_onepass ycc_rgb_convert

jpeg_idct_fast decode_mcu jzero finish_in-
put_pass

Function 1:
~42% of

execution
time

Function 2:
~40% of
execution
time

Figure 13. Part of the call tree for jpeg-6b, showing the two functions
considered by the case study.

address and size of an area of memory that is about to be
used. In principle, it is always possible to obtain the base
address, but sufficiently complex C code may obfuscate it.
Consequently, in early experiments, only a few of the base
pointers were correctly identified.

One solution for this problem is analysis of source code or
machine code, identifying all possible sources of an address
used by a memory operation, and ensuring that an OPEN
operation is correctly introduced. However, there is also a need
to work out which objects should be OPENed, because each
OPEN trades preloading time for access time and consumes
scratchpad space. As the WCET is not considered in this
study, a memory access profile is the most obvious way to do
this. In general, this contains information about the memory
resources used by a program. In this specific case, the memory
profile contains an entry for each instruction that creates a
base pointer. This entry has the fields listed in Figure 15. A
hash table relates every instruction address (pc) to at most one
record.

A profile (of any sort) is most easily obtained from a
Microblaze simulator because of the high bandwidth required
to download trace information from a real Microblaze CPU.
A Microblaze-compatible simulator was refactored from the
MCGREP project [37] for this purpose. It was extended
with an SMMU simulator, matching the memory map of the
real hardware platform considered in section 3. Within the
simulator, a perfect instruction cache is assumed. Instruction
execution times are as specified in the Microblaze reference
manual assuming a speed-optimised design [38]. Data accesses
from the SMMU take one clock cycle; data accesses from main
memory take L clock cycles (set as 20, which is an optimistic
figure according to Table 3).

Instructions that create base pointers can be detected by a
very simple method. A program is a deterministic system; it
will produce the same output given the same input, because
the execution process will follow the same path through the
code. The path does not change when the heap, stack and static
data areas are moved from start address X to start address Y
during the linking step. Moving the data areas from X to Y has
only one effect: every pointer value changes by Y −X . This
provides a simple way to detect any instruction that produces
a pointer, and any register or stack location that contains a
pointer (Figure 14). Two copies of the program are executed
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Figure 14. Two separate copies of the program are simulated at the same time. The data memory addresses are offset in the second copy,
so differences in the register values reveal the creation and usage of pointers.

t y p e d e f s t r u c t B a s e P o i n t e r s t r u c t
{

/∗ where t h e base p o i n t e r i s c r e a t e d : ∗ /
unsigned pc ;
/∗ range o f o f f s e t s used by a c c e s s e s ∗ /
i n t m i n o f f s e t , m a x o f f s e t ;
/∗ s t a t i s t i c a l da ta abou t t h e base p o i n t e r ∗ /
unsigned l o a d c o u n t , s t o r e c o u n t ;
unsigned c r e a t e c o u n t ;

} B a s e P o i n t e r ;

Figure 15. The memory profiler creates a Base_Pointer record
for each instruction that produces a base pointer.

simultaneously - differences in the output produced by any
instruction indicate the presence of a pointer5. The program
counters can be compared at each step to ensure that the two
simulators are following the same path through the code.

In this way, instructions that merely process a pointer (e.g.
adding an offset) can be distinguished from ones that create
a pointer, e.g. from a static memory address, or by loading a
value from memory. It is possible to track base pointers as they
are created and used, and as they move through the register
file and stack. This allows a record such as Figure 15 to be
obtained for every instruction that creates a base pointer. Note
that the record contains all the information needed by OPEN:
the size of the object, and the offset of the region that will
be accessed. It also indicates how often the object is accessed
and how often the base pointer is created. This data is needed
to decide which objects should be loaded into scratchpad.

5.2. Scratchpad Space Allocation Scheme

Each OPEN operation requires a scratchpad location to be
specified for the copy. This location needs to be chosen so
that the copy does not overwrite data that has been previously
OPENed and is still in use. Conventional dynamic memory al-
location algorithms can be used for this purpose, but this could

5. This method does have the caveat that a fully deterministic memory
subsystem is required (to ensure that the simulators operate in lock step).
Some code is sensitive to the values of memory addresses, e.g. malloc,
because alignment is important, but this can be avoided by ensuring that
Y −X is a large power of two.

be unwise: even if the algorithm has O(1) time complexity,
fragmentation could still occur within the scratchpad space,
causing allocations to fail unexpectedly. In a time-predictable
system, the best solution is to plan all memory allocations
offline (section 2.7).

However, a simple, time-predictable and fragmentation-free
algorithm does exist for memory allocation. Its disadvantage is
that memory can only be deallocated in last-in first-out (LIFO)
order, which is not optimal under all circumstances (e.g. Figure
16). This algorithm treats the scratchpad space as a stack (not
to be confused with the stack used by C). There is a global
copy location value. Every OPEN operation pushes a new item
onto the stack, increasing the copy location by the size of
the object. Every CLOSE operation pops the top item from
the stack, decreasing the copy location to its previous value.
Clearly, OPEN and CLOSE operations must be matched in
LIFO order, and situations like the one illustrated in Figure 16
cannot be handled efficiently. This means that more scratchpad
space will be required than is strictly necessary. A more
advanced allocation algorithm would be able to make better
use of the scratchpad resources.

The LIFO algorithm must store its data (e.g. pointers to
free space) within scratchpad memory. Otherwise, the cost of
allocating and freeing space will become significant. OPEN
could be used for this purpose at the cost of one table entry.
Alternatively, a second scratchpad could be added to the
system: this option is used for the following experiments, as it
has the advantage of isolating accesses carried out by memory
management functions from all other sorts of access.

5.3. Function 1: ycc rgb convert

This section considers the jpeg-6b function that converts
image data from the internal JPEG format (YCC, in which
luminance and colour data are stored separately) into RGB
format. The function converts one or more image rows at a
time. Figure 17 shows the source code. A total of 860,000
memory accesses are carried out by ycc rgb convert as it
processes the reference image (size 256 by 256). This is 13
memory accesses per pixel, plus a small overhead for the other
memory accesses needed to set up the conversion (some items



Label Counters Size Cost Benefit Score
l s c z cC(z) B(l + s)

range limit 196k 0 128 521 38.4k 3.74M 3.70M
outptr 256 196k 256 771 108k 3.74M 3.63M
inptr2 65.8k 0 256 259 43.0k 1.25M 1.21M
inptr0 65.8k 0 256 259 43.0k 1.25M 1.21M
inptr1 65.8k 0 256 259 43.0k 1.25M 1.21M
Crrtab 65.7k 0 128 680 48.6k 1.25M 1.20M
Crgtab 65.7k 0 128 680 48.6k 1.25M 1.20M
Cbgtab 65.7k 0 128 704 50.2k 1.25M 1.20M
Cbbtab 65.7k 0 128 704 50.2k 1.25M 1.20M
stack 4.10k 2.43k 1 1.76k 918 124k 123k

791 0 113 112 10.8k 15.0k 4.18k
105 0 15 112 1.44k 2.00k 555

2 0 1 8 44 38 -6
4 0 1 460 270 76 -194

254 0 112 16 5.38k 4.83k -550
508 0 112 460 30.2k 9.65k -20.6k

TABLE 4. Base pointers that exist in the register file or stack during execution of ycc rgb convert.

Loop Accesses LIFO memory
objects allocation

1 X, A, B X, B, A
2 X, B, C X, B, C
3 X, A, C X, B, C, A?

X, A, C?

Figure 16. LIFO memory allocation only permits the removal of the
topmost object in the LIFO queue. In this example, three loops are
executed in sequence. Each require three objects from the set {A, B,
C, X}. There is no efficient way to load object A for loop 3; either
all four objects must be resident (a waste of scratchpad space) or
object C must be unloaded and then reloaded (a waste of time).

are stored on the stack).
The memory profiler reveals the base pointers that are active

during the function (Table 4). The table gives the total number
of load (l) and store (s) operations on each base pointer, along
with the number of times that base pointer is created (c). The
total size (z) is given: this is the maximum offset minus the
minimum offset. These are used to compute the cost C of
loading the object into scratchpad whenever the base pointer
is created. This cost is multiplied by 2, because the object
must also be unloaded. C is defined as C(z) = 2(L + z),
where L is 20 (section 5.1). The data is also used to compute
the benefit B, which is the time saved by loading the object
into scratchpad instead of keeping it in external memory. B
is defined as B(l + s) = (L− 1)(l + s).

Score (the final column) is defined as B−C. This indicates
the approximate value of moving the object into scratchpad.
The value is approximate because the actual cost of the
transfer will be higher than C due to (1) the overhead of
managing the LIFO queue (section 5.2) and (2) the discrepancy
between the true size of an object and the size measured during
simulation. The table has been sorted in descending order of
Score.

The contents of the table are input data (inptr1, etc.), lookup
tables (Crgtab, range limit), output data (outptr) and the stack.
Other unlabelled items are minor forms of input data that

void y c c r g b c o n v e r t ( j d e c o m p r e s s p t r c i n f o ,
JSAMPIMAGE i n p u t b u f , JDIMENSION inpu t row ,
JSAMPARRAY o u t p u t b u f , i n t num rows )

{
m y c c o n v e r t p t r c c o n v e r t =

( m y c c o n v e r t p t r ) c i n f o−>c c o n v e r t ;
JDIMENSION num cols = c i n f o−>o u t p u t w i d t h ;
r e g i s t e r JSAMPLE ∗ r a n g e l i m i t =

c i n f o−>s a m p l e r a n g e l i m i t ;
r e g i s t e r i n t ∗ C r r t a b = c c o n v e r t−>C r r t a b ;
r e g i s t e r i n t ∗ Cbbtab = c c o n v e r t−>Cb b tab ;
r e g i s t e r INT32 ∗ Cr g t ab = c c o n v e r t−>Cr g tab ;
r e g i s t e r INT32 ∗ Cbgtab = c c o n v e r t−>Cb g tab ;

whi le (−−num rows >= 0) {
i n p t r 0 = i n p u t b u f [ 0 ] [ i n p u t r o w ] ;
i n p t r 1 = i n p u t b u f [ 1 ] [ i n p u t r o w ] ;
i n p t r 2 = i n p u t b u f [ 2 ] [ i n p u t r o w ] ;
i n p u t r o w ++;
o u t p t r = ∗ o u t p u t b u f ++;
f o r ( c o l = 0 ; c o l < num cols ; c o l ++) {

y = GETJSAMPLE( i n p t r 0 [ c o l ] ) ;
cb = GETJSAMPLE( i n p t r 1 [ c o l ] ) ;
c r = GETJSAMPLE( i n p t r 2 [ c o l ] ) ;
o u t p t r [RGB RED] = r a n g e l i m i t [ y + C r r t a b [ c r ] ] ;
o u t p t r [RGB GREEN] = r a n g e l i m i t [ y +

( ( i n t ) RIGHT SHIFT ( Cbgtab [ cb ] + Cr g t ab [ c r ] , SCALEBITS ) ) ] ;
o u t p t r [RGB BLUE] = r a n g e l i m i t [ y + Cbbtab [ cb ] ] ;
o u t p t r += RGB PIXELSIZE ;

}
}

}

Figure 17. Function 1, ycc rgb convert.

are accessed only as the procedure is called, e.g. cconvert.
It is clear that range limit and outptr are the best candidates
for scratchpad allocation, because the cost of storing these in
scratchpad is much smaller than the benefit of fast access. The
input data and lookup tables are also good candidates. These
represent the “low hanging fruit” for scratchpad allocation,
enabling a 6.4× reduction in execution time in comparison to
the use of external memory. This execution time reduction is
just over half of the 12.2× reduction that would be expected if
ycc rgb convert was executed with a perfect data cache. The
modified source code appears in Figure 18.

A further marginal reduction (to 6.8×) is possible by storing



the stack frame of ycc rgb convert within the scratchpad. This
improvement is very small because the main cost of processing
the image has already been reduced as far as possible: the
13 memory accesses per pixel all go to scratchpad. However,
if scratchpad space is available, it is still worthwhile as the
benefit outweighs the cost. The pointer to the current stack
frame is stored in register r1, and the OPEN operation can
obtain r1 using inline assembly:
asm volatile ( "addik %0, r1, 0\n" : "=r"(sp) );

Together, these improvements allow 99.6% of the memory
accesses in ycc rgb convert to be handled by the scratchpad.
As Table 4 shows, attempting to OPEN any of the remainder
will actually increase the execution time, because C > B.

More substantial improvements are possible, however. The
JPEG decoder currently processes exactly one row at a
time, i.e. the num rows variable is always 1 on entry to
ycc rgb convert. If more than one row was processed at
once, the overall cost of OPENing and CLOSEing the lookup
table data would be reduced. For example, processing 2
rows at a time would reduce the execution time by 8.2×
(relative to the use of external memory). This change is an
adjustment to a single parameter of the high-level function
jpeg read scanlines.

This example demonstrates that making efficient use of
memory can require understanding what the program is doing,
then using that knowledge to reduce the number of times
that OPEN and CLOSE need to be called. The necessary
changes may not be trivial. Increasing the jpeg read scanlines
parameter beyond 2 has no effect on ycc rgb convert, because
other parts of the JPEG software are only able to produce two
rows at once. Even greater improvements would require larger
changes elsewhere in the software.

The 12.2× execution time reduction (for a perfect data
cache) is not practical, but the program modifications de-
scribed in this section are within a factor of 1.5 of that ideal
case. More importantly, the scratchpad and SMMU will always
produce the same execution time, unlike any practical data
cache.

5.4. Function 2: decompress onepass

The decompress onepass function produces the YCC data
that is processed by Figure 18. It is also a significant user
of CPU time (and memory bandwidth) within the JPEG
software, but scratchpad allocations are more difficult because
the function is substantially larger and more complex. Four
subroutines are called (Figure 13):
• jpeg idct fast (performs the inverse DCT operation)
• decode mcu (decodes the raw JPEG data)
• jzero far (zeroes a memory area)
• finish input pass (updates pointers after pass)

A total of 780,000 memory accesses are carried out by
decompress onepass as it operates on the reference image. A
perfect data cache would reduce the execution time by 6.9×
in relation to the use of external memory only (with L = 20).

void y c c r g b c o n v e r t ( j d e c o m p r e s s p t r c i n f o ,
JSAMPIMAGE i n p u t b u f , JDIMENSION inpu t row ,
JSAMPARRAY o u t p u t b u f , i n t num rows )

{
m y c c o n v e r t p t r c c o n v e r t =

( m y c c o n v e r t p t r ) c i n f o−>c c o n v e r t ;
JDIMENSION num cols = c i n f o−>o u t p u t w i d t h ;
r e g i s t e r JSAMPLE ∗ r a n g e l i m i t =

c i n f o−>s a m p l e r a n g e l i m i t ;
r e g i s t e r i n t ∗ C r r t a b = c c o n v e r t−>C r r t a b ;
r e g i s t e r i n t ∗ Cbbtab = c c o n v e r t−>Cb b tab ;
r e g i s t e r INT32 ∗ Cr g t ab = c c o n v e r t−>Cr g tab ;
r e g i s t e r INT32 ∗ Cbgtab = c c o n v e r t−>Cb g tab ;

e1 = OPEN ( r a n g e l i m i t − 257 , 1408 , 0 ) ;
e2 = OPEN ( C r r t a b , 1020 , 1408 ) ;
e3 = OPEN ( C rg t ab , 1020 , 1408 + 1020 ) ;
e4 = OPEN ( Cbgtab , 1020 , 1408 + 1020 ∗ 2 ) ;
e5 = OPEN ( Cbbtab , 1020 , 1408 + 1020 ∗ 3 ) ;

whi le (−−num rows >= 0) {
i n p t r 0 = i n p u t b u f [ 0 ] [ i n p u t r o w ] ;
i n p t r 1 = i n p u t b u f [ 1 ] [ i n p u t r o w ] ;
i n p t r 2 = i n p u t b u f [ 2 ] [ i n p u t r o w ] ;
e6 = OPEN ( i n p t r 0 , MAX NUM COLS ,

1408 + 1020 ∗ 4 ) ;
e7 = OPEN ( i n p t r 1 , MAX NUM COLS ,

1408 + 1020 ∗ 4 + MAX NUM COLS ) ;
e8 = OPEN ( i n p t r 2 , MAX NUM COLS ,

1408 + 1020 ∗ 4 + MAX NUM COLS ∗ 2 ) ;
i n p u t r o w ++;
o u t p t r = ∗ o u t p u t b u f ++;
e9 = OPEN ( o u t p t r , MAX NUM COLS ∗ 3 ,

1408 + 1020 ∗ 4 + MAX NUM COLS ∗ 3 ) ;
f o r ( c o l = 0 ; c o l < num cols ; c o l ++) {

y = GETJSAMPLE( i n p t r 0 [ c o l ] ) ;
cb = GETJSAMPLE( i n p t r 1 [ c o l ] ) ;
c r = GETJSAMPLE( i n p t r 2 [ c o l ] ) ;
o u t p t r [RGB RED] = r a n g e l i m i t [ y + C r r t a b [ c r ] ] ;
o u t p t r [RGB GREEN] = r a n g e l i m i t [ y +

( ( i n t ) RIGHT SHIFT ( Cbgtab [ cb ] + Cr g t ab [ c r ] , SCALEBITS ) ) ] ;
o u t p t r [RGB BLUE] = r a n g e l i m i t [ y + Cbbtab [ cb ] ] ;
o u t p t r += RGB PIXELSIZE ;

}
CLOSE ( e9 ) ; CLOSE ( e8 ) ;
CLOSE ( e7 ) ; CLOSE ( e6 ) ;

}
CLOSE ( e5 ) ; CLOSE ( e4 ) ; CLOSE ( e3 ) ;
CLOSE ( e2 ) ; CLOSE ( e1 ) ;

}

Figure 18. Function 1, ycc rgb convert, with OPEN and CLOSE
commands. Note that the size and copy location parameters of
each OPEN are given in bytes, and derived from constants (e.g.
MAX NUM COLS) and the true sizes of the data elements rather
than the range of offsets used during simulation (the JPEG library
uses larger tables than strictly necessary to account for errors in the
input data). The total space usage is 7kb for the 256 column reference
image.

The operation of decompress onepass is split into two phases
which occur within an enclosing loop. The first phase calls
decode mcu to obtain new JPEG data (accounting for 18% of
the memory accesses). The second phase calls jpeg idct fast
to produce YCC data (accounting for 73% of the memory
accesses). Although both phases share some memory elements
(e.g. an input buffer), their usage of the scratchpad will be
quite different.

Table 5 shows the base pointers that are active during
jpeg idct fast. As before, these can be divided into input data,
output data, lookup tables and the stack. The input data (e.g.
coef->MCU buffer), lookup tables (e.g. compptr->dct table)



Label Counters Size Cost Benefit Score
l s c z cC(z) B(l + s)

stack 172k 159k 1 1.76k 918 6.30M 6.30M
coef->MCU buffer 98.9k 0 1.54k 130 159k 1.88M 1.72M

output ptr 21.2k 0 768 64 55.3k 403k 348k
IDCT range limit(cinfo) 64.4k 0 1.54k 1.16k 946k 1.22M 277k

compptr->dct table 27.8k 0 1.54k 248 251k 528k 276k
cinfo 12.0k 1 113 460 30.5k 228k 198k

compptr 13.1k 0 768 84 63.0k 249k 186k
cinfo->coef 3.41k 16 16 56 1.09k 65.1k 64.0k
output ptr 768 0 16 12 736 14.6k 13.9k

output 0 98.3k 12.3k 259 2.06M 1.87M -196k

TABLE 5. Base pointers that exist in the register file or stack during execution of jpeg idct fast.

and stack can be handled as described in the previous section.
It is best to OPEN these objects in decompress onepass
because they are shared by multiple calls to jpeg idct fast.

This covers the majority (82%) of the accesses performed
by jpeg idct fast, making this part of decompress onepass
execute 3.5× faster than it would using external memory
only. However, a perfect data cache would be 7.5× faster.
The discrepancy is mostly due to the remaining 18% of the
accesses. These account for 81% of the execution time spent in
accessing memory: the external memory access latency is L×
greater than the latency of a scratchpad access. These accesses
form the bottom three rows of Table 5.

The data shows that most of the remaining external
memory accesses are store operations to the output buffer.
Output presents a problem because of its access pattern.
jpeg idct ifast fills square blocks of 8 by 8 pixels, so the
longest contiguous memory space is 8 bytes. This does not
respond well to OPEN and CLOSE when used naı̈vely, as the
figures for B and C demonstrate. Each access to a row of 8
pixels uses a new base pointer, so B and C assume an OPEN
and a CLOSE for each row. This is much less efficient than
simply writing directly to external memory, because of the
overhead incurred by each OPEN and CLOSE.

Like the improvement gained in section 5.3 by processing
more than one row of data at once, a change is necessary to
improve the efficiency of memory usage. One solution would
be to OPEN all of the memory that might be written to, but
this would be a large area (the entire image). Another solution
would OPEN 8 complete rows of the output buffer; decom-
press onepass scans the image from left to right. However, the
memory occupied by rows is also not contiguous, because the
output buffer is actually a separate buffer for each row. The
rows could only be contiguous if part of the JPEG software
was rewritten. Therefore, the simplest solution is to OPEN all
8 rows separately.

In this arrangement, 99.7% of the accesses are handled by
scratchpad. The unhandled accesses still account for 5% of the
execution time, but jpeg idct fast now executes 5.3× faster
than it would using external memory only. This is within a
factor of 1.5 of the performance of a perfect data cache.

However, the overall execution time of decompress onepass
has only been reduced by 3.6×. 8.0% of the memory access
instructions are handled by external memory, and 93% of these

occur in decode mcu. Table 6 shows the base pointers that are
active within decode mcu.

As in Table 5, the base pointers in Table 6 can be classed as
input, output, stack or lookup table. Some of these also appear
in Table 5 and are already allocated to scratchpad. Others can
be allocated in decode mcu, although next input byte is a
little difficult due to the unbounded nature of the input data
stream. When entropy and cinfo->coef are allocated to the
scratchpad, only 6.6% of the memory access instructions in
decompress onepass are handled by external memory.

Further improvements require a solution to the problem
posed by actbl and dctbl (bottom of Table 6). The naı̈ve
solution loads the lookup tables as soon as the base pointers are
created, which results in a cost that is significantly greater than
the benefit. A better solution would involve examination of the
source code, which would reveal that actbl can only have only
one of five values: NULL and one of four tables. The same is
true for dctbl, which has another set of four tables. The tables
could be preloaded at the beginning of decompress onepass,
or earlier. This is similar to the solution applied for the output
buffer.

However, the solution is not easy in this case. Firstly, the
tables are large (11392 bytes in total). Secondly, the cost of the
OPEN operations at the start of decode mcu is not enough to
offset the cost of the subsequent load operations. This is why
the execution time of decode mcu actually increases by 3.1%
when actbl is OPENed. The tables could be opened within
decompress onepass, and kept open throughout the image,
but this would reduce the space available for all the items
in Table 5 which have a greater significance on execution
time. Therefore, actbl and dctbl must remain in external
memory unless a larger scratchpad and larger SMMU table
are available.

5.5. Summary

This case study has demonstrated that the SMMU and
scratchpad can be used with a real C program. In the simulator,
the scratchpad allocations discussed in sections 5.3 and 5.4
reduce the execution time of jpeg-6b by 3.0× in relation to
external memory only. This has been achieved using a 16kbyte
scratchpad which is only used within two functions (decom-
press onepass and ycc rgb convert). Within those functions,



the reduction is 5.0×. 8.9× would be achieved using a perfect
data cache. Therefore, the performance of the SMMU is within
a factor of 1.8 of a perfect data cache for those functions.

Across the whole program, a perfect data cache could
achieve a 7.8× reduction in relation to external memory
only. A real data cache would approach that figure in good
conditions, but would be much slower than the SMMU imple-
mentation in some circumstances.

On real hardware, the SMMU implementation described in
section 3 achieves a 2.7× reduction in relation to the use of
external memory only. The real memory latency is higher and
the real cost function C is only approximately linear (Table
3). Additionally, real hardware cannot use a perfect instruction
cache, so a conventional direct-mapped instruction cache is
used.

The case study demonstrates that some memory objects are
much harder to allocate to scratchpad than others, because
they are large or infrequently accessed (like “actbl” in Table
6) or fragmented (like “output” in Table 5). The significance of
these objects increases when others are allocated to scratchpad,
and they can dominate the execution time of a function, as in
jpeg idct fast, where one SMMU allocation arrangement led
to 18% of the accesses accounting for 81% of the execution
time. Unfortunately, it can be difficult to find ways to allocate
these objects. An understanding of the code will be needed in
some cases.

The case study provides good evidence for the claim made
in section 2.7: automatic scratchpad allocation is needed for
programs of any practical size to avoid the time-consuming
process of manually identifying objects. Automatic approaches
could improve the execution time further, because variables
would be allocated to scratchpad in other parts of the program.
However, automatic allocation would not be able to apply
the transformations used to improve access to some objects.
At best, an automatic tool would simply be able to tell a
programmer where optimisations are most needed.

6. Conclusion

This report has presented the scratchpad memory manage-
ment unit (SMMU) as a replacement for a data cache for hard
real-time systems. The SMMU can be interfaced to CPUs for
embedded systems such as Microblaze (section 3), and this
has been tested in an FPGA and found to have reasonable
implications for clock frequency and logic area (section 4).
The usage of the SMMU within a C program has also been
examined through a case study (section 5). The case study used
a memory profiler to identify the properties of each memory
object being used by a particular function.

The efficiency of the SMMU is less than that of a perfect
data cache by a factor of 1.8 for the functions considered in
the case study, and by a factor of 2.7 for the whole program.
Not all variables can be loaded into scratchpad due to its
limited size. The scratchpad loading process also takes time,
and the reduction in access time must compensate for this time.
Sometimes the required data can be loaded earlier, reducing

the number of OPEN operations required (as for the “output”
object in Table 5). However, this increases space requirements.

The advantage of the SMMU is its time predictability
combined with its low latency. It allows the latency of every
load or store operation in a program to be bounded or known
precisely. It is not a perfect data cache, but it behaves as one
for a known subset of memory operations.

The existence of the SMMU provides a practical way to
implement memory accesses with deterministic latency, which
is assumed by some previous work [34], [35]. It could be
combined with related approaches, such as a cache for stack
data and instructions [17].

Topics for future investigation include (1) an allocation
algorithm to add OPEN and CLOSE operations to a program
in order to reduce the WCET, (2) the use of multiple levels of
scratchpad (analogous to multi-level caching; this could allow
larger scratchpads to be used), and (3) improvements to OPEN
and CLOSE to handle the special cases of read-only and write-
only objects.

References

[1] A. Burns and A. J. Wellings, Real-Time Systems and Programming
Languages. Addison Wesley, 2001.

[2] P. Puschner and A. Burns, “Guest editorial: A review of worst-case
execution-time analysis,” Real-Time Syst., vol. 18, no. 2-3, pp. 115–128,
2000.

[3] ARM, “Platform Baseboard for ARM11 MPCore,” http://www.arm.com/
products/DevTools/PB11MPCore.html.

[4] Simtec, “EB110ATX (codename CATS),” http://www.simtec.co.uk/
products/EB110ATX/.

[5] J. Whitham, “Virtual Lab - Board Server Hardware,” http://www.
jwhitham.org.uk/c/vlab/fx12hw.html.

[6] Xilinx, “ML505 User Guide,” Manual UG347, 2008.
[7] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth

Edition: A Quantitative Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2006.

[8] P. J. Denning, “Virtual memory,” ACM Comput. Surv., vol. 2, no. 3, pp.
153–189, 1970.

[9] P. Puschner and A. Schedl, “Computing maximum task execution times
- a graph-based approach,” Real-Time Syst., vol. 13, no. 1, pp. 67–91,
1997.

[10] X. Vera, B. Lisper, and J. Xue, “Data cache locking for tight timing
calculations,” Trans. on Embedded Computing Sys., vol. 7, no. 1, pp.
1–38, 2007.

[11] S.-K. Kim, S. L. Min, and R. Ha, “Efficient worst case timing analysis
of data caching,” in Proc. RTAS, 1996, p. 230.

[12] T. Lundqvist and P. Stenström, “A method to improve the estimated
worst-case performance of data caching,” in Proc. RTCSA, 1999, p. 255.

[13] M. Schoeberl, “Time-predictable computer architecture,” EURASIP
Journal on Embedded Systems, vol. vol. 2009, Article ID 758480, p.
17 pages, 2009.

[14] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee,
“Predictable programming on a precision timed architecture,” in Proc.
CASES, 2008, pp. 137–146.

[15] M. Schoeberl, “A Java processor architecture for embedded real-time
systems,” Journal of Systems Architecture, vol. 54/1–2, pp. 265–286,
2008. [Online]. Available: http://www.jopdesign.com/doc/rtarch.pdf

[16] S. Edwards and E. A. Lee, “The Case for the Precision Timed (PRET)
Machine,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-149, Nov 2006. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-149.html

[17] M. Schoeberl, “Time-predictable cache organization,” in Proc. STFSSD,
March 2009.

[18] S. Furber, ARM System-on-Chip Architecture. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000.



Label Counters Size Cost Benefit Score
l s c z cC(z) B(l + s)

stack 170k 158k 1 1.76k 918 6.25M 6.25M
output ptr 21.2k 0 768 64 55.3k 403k 348k

cinfo 12.0k 1 113 460 30.5k 228k 198k
compptr 13.1k 0 768 84 63.0k 249k 186k
entropy 8.45k 1.79k 256 216 37.9k 194k 156k

next input byte 6.15k 0 256 64 18.4k 116k 98.4k
cinfo->coef 3.66k 16 16 56 1.09k 69.9k 68.8k

output buffer 768 0 16 12 736 14.6k 13.9k
coef->MCU buffer 0 8.22k 1.54k 116 150k 156k 5.75k

actbl 18.1k 0 1.54k 1.42k 1.15M 344k -807k
dctbl 3.07k 0 1.54k 1.42k 1.15M 58.4k -1.09M

TABLE 6. Base pointers that exist in the register file or stack during execution of decode mcu.

[19] R. Kirner and P. Puschner, “Discussion of Misconceptions about
WCET,” in Proc. WCET, 2003, pp. 61–64.

[20] F. Mueller, “Compiler support for software-based cache partitioning,” in
Proc. LCTES. New York, NY, USA: ACM Press, 1995, pp. 125–133.

[21] I. Puaut, “Cache analysis vs static cache locking for schedulability
analysis in multitasking real-time systems,” in Proc. WCET, Vienna,
Austria, June 2002.

[22] J.-F. Deverge and I. Puaut, “WCET-Directed Dynamic Scratchpad Mem-
ory Allocation of Data,” in Proc. ECRTS, 2007, pp. 179–190.

[23] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “WCET Centric
Data Allocation to Scratchpad Memory,” in Proc. RTSS. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 223–232.

[24] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan,
and P. Marwedel, “Reducing energy consumption by dynamic copying
of instructions onto onchip memory,” in Proc. ISSS. New York, NY,
USA: ACM Press, 2002, pp. 213–218.

[25] R. J. Pankhurst, “Operating systems: Program overlay techniques,”
Commun. ACM, vol. 11, no. 2, pp. 119–125, 1968.

[26] I. Puaut and D. Hardy, “Predictable paging in real-time systems: A
compiler approach,” in Proc. ECRTS, 2007, pp. 169–178.

[27] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation
for scratch-pad memory using compile-time decisions,” Trans. on Em-
bedded Computing Sys., vol. 5, no. 2, pp. 472–511, 2006.

[28] I. Puaut and C. Pais, “Scratchpad memories vs locked caches in hard
real-time systems: a quantitative comparison,” in Proc. DATE, 2007, pp.
1484–1489.

[29] D. R. Chase, M. Wegman, and F. K. Zadeck, “Analysis of pointers and
structures,” in Proc. PLDI, 1990, pp. 296–310.

[30] A. Moshovos, “Exploiting load/store parallelism via memory depen-
dence prediction,” in Speculative Execution in High Performance Com-
puter Architectures. CRC Press, 2005, pp. 355–392.

[31] E. H. Gornish and A. Veidenbaum, “An integrated hardware/software
data prefetching scheme for shared-memory multiprocessors,” Int. J.
Parallel Program., vol. 27, no. 1, pp. 35–70, 1999.

[32] R. W. M. Jones and P. H. J. Kelly, “Backwards-compatible bounds
checking for arrays and pointers,” in Proc. AADEBUG, 1997, pp. 13–26.

[33] A. Ermedahl and J. Gustafsson, “Deriving annotations for tight calcu-
lation of execution time,” LNCS, vol. 1300, pp. 1298–1307, 1997.

[34] P. Puschner, “Is worst-case execution-time analysis a non-problem? –
towards new software and hardware architectures,” in Proc. ECRTS, ser.
Technical Report, Jun. 2002.

[35] J. Whitham and N. Audsley, “Predictable Out-of-order Execution Using
Virtual Traces,” in Proc. RTSS, 2008, pp. 445–455.

[36] S. Mohan and F. Mueller, “Merging state and preserving timing anoma-
lies in pipelines of high-end processors,” in Proc. RTSS, 2008, pp. 467–
477.

[37] J. Whitham, “SMMU Web Page,” http://www.jwhitham.org.uk/c/smmu.
html.

[38] Xilinx, “Microblaze processor reference guide,” http://www.xilinx.
com/bvdocs/userguides/ug081.pdf, Xilinx Corporation, Manual UG081,
2005.

[39] PetaLogix, “Linux Solutions (accessed 23 January 08),” http://www.
petalogix.com/, 2007.

[40] Xilinx Corporation, “Microblaze Structural VHDL Source Code
licence,” http://www.xilinx.com/ipcenter/doc/microblaze click core
source license.pdf.

[41] IBM, “CoreConnect PLB4 Bus Cores,” http://www-01.ibm.com/chips/
techlib/techlib.nsf/products/CoreConnect PLB4 Bus Cores.

[42] D. A. Patterson and J. L. Hennessy, Computer organization & design:
the hardware/software interface. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993.

[43] Independent JPEG Group, http://www.ijg.org/.


