
Implementing Time-Predictable
Load and Store Operations 1

Jack Whitham
jack@cs.york.ac.uk

Real-Time Systems Group
Department of Computer Science

University of York, York

Neil Audsley
neil@cs.york.ac.uk

Real-Time Systems Group
Department of Computer Science

University of York, York

ABSTRACT
Scratchpads have been widely proposed as an alternative to
caches for embedded systems. Advantages of scratchpads in-
clude reduced energy consumption in comparison to a cache
and access latencies that are independent of the preceding
memory access pattern. The latter property makes memory
accesses time-predictable, which is useful for hard real-time
tasks as the worst-case execution time (WCET) must be
safely estimated in order to check that the system will meet
timing requirements.

However, data must be explicitly moved between scratch-
pad and external memory as a task executes in order to
make best use of the limited scratchpad space. When dy-
namic data is moved, issues such as pointer aliasing and
pointer invalidation become problematic. Previous work has
proposed solutions that are not suitable for hard real-time
tasks because memory accesses are not time-predictable.

This paper proposes the scratchpad memory management
unit (SMMU) as an enhancement to scratchpad technol-
ogy. The SMMU implements an alternative solution to the
pointer aliasing and pointer invalidation problems which
(1) does not require whole-program pointer analysis and
(2) makes every memory access operation time-predictable.
This allows WCET analysis to be applied to hard-real time
tasks which use a scratchpad and dynamic data, but results
are also applicable in the wider context of minimizing en-
ergy consumption or average execution time. Experiments
using C software show that the combination of an SMMU
and scratchpad compares favorably with the best and worst
case performance of a conventional data cache.

Categories and Subject Descriptors
C.3 [Special Purpose and Application-based Systems]:
Real-time and Embedded Systems

General Terms
Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’09, October 12–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-627-4/09/10 ...$5.00.

1. INTRODUCTION
A time-predictable memory operation is defined as a load

or store instruction within a task with a latency that can be
precisely predicted before execution [28]. Time-predictable
memory operations are particularly important in embedded
systems that execute hard real-time [3] tasks, because each
task must complete before a deadline. The worst-case exe-
cution time (WCET) is estimated for hard real-time tasks
in order to assure this [25]. The process of WCET analysis
(estimating the WCET) is greatly simplified if each memory
access operation is time-predictable. It is easier to produce
an estimate that is tight (close to the true WCET) while
still being safe (no less than the true WCET) as the WCET
estimation process does not need to account for the variable
latency of memory access operations.1

This paper only considers data memory access operations,
i.e. load and store instructions. It is assumed that all other
instructions have predictable latency, which could be ar-
ranged in a practical embedded system through the use of a
simple CPU design [39] with a scratchpad to store instruc-
tions [23]. The latency of memory access operations is not
so easy to assure. Accesses to external memory (e.g. static
RAM) can have fixed latency. However, increases in mem-
ory bus frequency to achieve higher bandwidth have made
that latency costly: 30 or more clock cycles being typical
(Table 1), mostly due to the bus transaction setup time.
Data caches [11] are the conventional solution to this prob-
lem, but the latency of each access depends on the preceding
reference string, which is the sequence of effective addresses
used by memory accesses within a task [5]. This dependence
limits the effectiveness of WCET analysis for data caches,
since it is only possible when (1) the reference string is inde-
pendent of input data and (2) only statically allocated and
stack data are used [17,34].

Scratchpads [6, 32] can be used to store data as well as
instructions. They implement time-predictable memory ac-
cesses, since scratchpad access latencies are independent of
the preceding reference string. However, programs must ex-
plicitly manage the scratchpad space. This can be done at
the programmer’s direction (“overlay programming” [23]),
but this is time-consuming and error-prone [15], so previ-
ous work has described algorithms to automatically allo-
cate a subset of a program’s data to scratchpad. This sub-
set may be static [32] or dynamically updated during execu-
tion [6,15,33], but the forms of data and programs that can
be supported are restricted. Specifically, time-predictable

1This work was supported by EU ICT projects eMuCo and
JEOPARD, nos. 216378 and 216682.

scratchpad allocation algorithms only support statically al-
located or stack data [6, 32], while non time-predictable al-
gorithms can only support dynamic data if whole-program
pointer analysis can identify every memory operation that
could access each variable [33].

The contribution of this paper is a description and evalu-
ation of the scratchpad memory management unit (SMMU),
a new technology for embedded systems. The SMMU moves
data between scratchpad and external memory, but also
stores details of each move that is made so that the logical
address of each data item is unchanged by the move. This
eliminates pointer aliasing and invalidation. In this paper,
the characteristics of the SMMU are demonstrated using
code that could not be accepted by previous approaches.
The new work satisfies three objectives that are not met to-
gether by any previous work. Firstly, any form of data can
be supported, including dynamic data. Secondly, accesses
are time-predictable since every load or store operation can
be classified offline as a “scratchpad” or “external memory”
access. Thirdly, whole-program pointer analysis is not re-
quired: previous work required such analysis [6,33] or elim-
inated pointers entirely [32]. The SMMU lifts some of the
restrictions forced on embedded hard real-time tasks by the
limitations of WCET analysis, such as the lack of support for
dynamic data [14]; a topic of importance as the complexity
of embedded software grows, and object-oriented languages
such as Java are applied to real-time systems [28].

Although the focus of this paper is on hard real-time sys-
tems, other embedded software may benefit. The SMMU
acts on entire objects rather than fixed-size cache lines or
pages, so the size and energy cost of the SMMU is propor-
tional to its maximum number of objects rather than the size
of the scratchpad memory. Consequently, the combination
of an SMMU and scratchpad retains the energy advantage
of a scratchpad-only design [31, 33], which is important in
any battery-powered system. Additionally, any scratchpad
allocation algorithm (e.g. [15,33]) can be adapted to use the
SMMU, since the SMMU implements the functionality of
the direct memory access (DMA) controllers that are con-
ventionally used to copy data between scratchpad and ex-
ternal memory. Explicit control of memory has been shown
to benefit a range of embedded applications [21].

The layout of this paper is as follows. Section 2 gives a
motivating example for the rest of the paper: a function that
is not fully supported by previous work. Section 3 explains
the problems that prevent data scratchpads being used to
implement time-predictable support for pointers, and sec-
tion 4 discusses the features of a time-predictable solution
for these problems. In this paper, the suggested solution
is the SMMU (section 5), which is evaluated in section 6.
Section 7 has related work and the paper is concluded by
section 8.

2. MOTIVATING EXAMPLE
Figure 1 shows the contents of the ycc rgb convert func-

tion from libjpeg [12]. This code forms part of the process
of decoding a JPEG file into RGB data for display on a
screen. It has been chosen as an example because previous
techniques would force a time-predictable implementation
to use external memory, with a high latency for each access.

Firstly, none of the data used by this function would be
suitable for data scratchpad allocation using techniques de-
scribed by Suhendra et al. [32] or Deverge and Puaut [6]

Latency/ CPU Bus
System CPU clock freq/ freq/

cycles MHz MHz
ARM PB11MPcore [1] 79 210 70
StrongARM-110 [30] 17 50 50
PPC 405 (FX12) [36] 33 100 100
Microblaze (ML505) [40] 31 125 125

Table 1: Measured latency for a load operation on
four embedded systems, given in CPU clock cycles
with data caches disabled.

because each variable is accessed using a pointer from dy-
namically allocated memory. The surrounding library code
would change significantly to accommodate static allocation.

Secondly, a time-predictable implementation could not
use a data cache. The pointer values are unknown and
some of the effective addresses are dependent on input data
(e.g. Crrtab[cr], since cr := inptr2[col]). Current WCET
analysis techniques for data caches would force the majority
of memory accesses in the function to use external mem-
ory [17,34].

Future WCET analysis techniques for data caches might
be able to support code of this kind. However, the results of
tight WCET analysis would still be disappointing, as Table 2
illustrates. In Table 2, the approximate “best” and “worst”
numbers of cache misses (and related data) are shown for
Figure 1 and two cache sizes. These were computed using a
genetic algorithm which searched the space of possible off-
sets for each array used in Figure 12. The algorithm used the
measured execution time as a fitness value and attempted to
minimize (or maximize) it, finding an estimate for the best
(or worst) case. The huge difference between the “best”
and “worst” cases observed here is entirely due to conflict
misses [11]. A conflict miss occurs in any data cache when-
ever two or more items of data are competing for a single
cache line. The combination of a data cache and full support
for pointers forces WCET analysis to account for all possible
conflict miss scenarios (or use some other safe upper bound).
Although the figures in Table 2 are specific to this example,
a similar disparity between the best and worst case will be
found whenever more than n unknown addresses are being
accessed within a loop given an n-way associative cache.

The remainder of this paper shows how the SMMU is able
to support code such as Figure 1 and approach the “best”
case of Table 2 for any input data and any pointer values.

3. DATA SCRATCHPAD PROBLEMS
In principle, a scratchpad could be used to store all of

the objects used by ycc rgb convert. Consider an object as a
contiguous block of memory, such as the space allocated for
output buf or Crrtab, and consider a pointer as a reference to
an object. All of the objects used in ycc rgb convert could be
copied to scratchpad at the start of the function, then used
from scratchpad by changing all pointers to reference the

2To generate this data, Figure 1 is executed on an image of
size 1152 by 864 pixels. The cache line size is fixed at 16
bytes. The access times are based on the assumption that a
cache hit costs 1 clock cycle, a cache miss costs 50 (an op-
timistic example according to Table 1), and code that does
not access memory costs nothing. It is optimistically as-
sumed that other code only affects the cache by invalidating
input buf.

�����������	��������
� �
����������	��������
� �
�������������������
� �
��������������������
� � � �
��������������������
� � � �
��������������������
� � � � � �
��������������������
� � � � � �
��������������������
� � � � � �
��������������������
� � � � � �
��������������������
� � � � � ��

���� ���� ��� �������	����
����
���������������
�������������������������
���������������
�������������������������
���������������
�������������������������
���������������
����������������
�������������������
�����������������
�����������������
���������������
�������� ����� ��� ��������	����
��������
������������ ��
��������������
���������������
��������������
���������������
��������������
����������������������
�������������� ���������������
����������������������
�������������� ��
����������������!!�������������������������∀�#∃∃%#����
����������������������
��������������� ���������������
�������������������
�����������%�
��������
����

�

!

Figure 1: A program fragment from the libjpeg soft-
ware [12] making heavy use of pointers (pseudocode
translated from C).

Cache size (bytes) 8192 16384
Memory accesses 12942720
“Best” case miss count 123951 106058
“Worst” case miss count 4281635 4304087
“Best” access time 19016319 18139562
“Worst” access time 222742835 223842983
“Worst”/“Best” ratio 11.7 12.3

Table 2: Approximate “best” and “worst” cases of
data cache behavior for Figure 1 obtained by search.

scratchpad memory instead of the external memory. After
execution, the modified copy of output buf could be written
back to external memory.

While straightforward, this approach will not be taken
by time-predictable scratchpad allocation algorithms as pro-
posed by Suhendra [32] or Deverge [6] because the objects
are dynamically allocated. Suhendra and Deverge omit sup-
port for pointers with addresses that cannot be predicted
offline because of the additional complexity that they intro-
duce. This complexity falls into three categories: pointer
aliasing, pointer invalidation and object sizing.

3.1 Pointer Aliasing
Suppose that the objects used by ycc rgb convert were

copied to scratchpad just after the function was called, as
suggested above. In this arrangement, correct behavior re-
quires that the memory allocated for output buf is not shared
by any of the inputs. This happens to be a safe assumption
in this case, but not in general. It is an instance of the
pointer aliasing problem [4], where two or more pointers re-
fer to the same data. The pointer aliasing problem is not
specific to C: it also exists in languages where pointers are
strongly typed, e.g. the references used within Java [35].

The issue of pointer aliasing becomes a problem when an
assumption must be made regarding the nature of two or
more pointers, viz. whether they point to the same object
or not. Sometimes, this can be determined by pointer anal-
ysis at compile time, and this is part of the purpose of the
restrictions applied by [6]. However, such analysis is not pos-
sible in general. In other research fields, unknown pointer
aliasing is handled by making a safe assumption. For exam-
ple, compilers can ensure that all memory access operations
are performed in program order, which inhibits some opti-
mizations. In the case of scratchpad allocation, the only safe
assumption is to avoid moving possibly-aliased objects to a
new physical location.

3.2 Pointer Invalidation
Some scratchpad allocation algorithms [31, 32] are static

in the sense that the set of objects stored in scratchpad
is fixed throughout execution. Dynamic allocation algo-
rithms [6] make better use of scratchpad space because the
set of objects stored in scratchpad can change during exe-
cution, matching the requirements of the current function.
Pointer invalidation can occur when an object is moved from
scratchpad to external memory (or vice versa). Pointers cre-
ated before the move may not be correct afterward. In the
case of scratchpad allocation, the safe assumption is to either
avoid moving objects (which would force a static allocation)
or identify every usage of a specific object.

3.3 Object Sizing
Time-predictable scratchpad allocation algorithms depend

on knowledge of the size of each object used by the program.
The restrictions applied by [6,32] make it easy to determine
the size of each object used by the program offline, because
there is a 1-1 relationship between the variables in the source
code and the objects they represent. Variables can only be
created statically (i.e. as global variables) or on the stack,
so each has a size that is fixed at compile time. The size can
be computed at the point of use by examining the type asso-
ciated with the variable. When pointers and dynamic data
are introduced, this is not possible. While a dynamically
allocated object usually does have a fixed size, dynamically-
sized arrays being the exception, the size information is not
exposed to the compiler and it cannot be computed where
a pointer to the object is used. This means that a scratch-
pad allocation algorithm cannot know (1) how much space
is required in scratchpad, or (2) the time taken to trans-
fer the data between external memory and scratchpad. The
safe assumption is to insist that every object has a compiler-
known size, i.e. that all objects are allocated statically or on
the stack.

3.4 Previous Solutions
Two of the three pointer issues listed above have been

handled by one scratchpad allocation algorithm, which is
described by Udayakumaran, Dominguez and Barua [33]. It
supports dynamic data, and the subset of objects allocated
to scratchpad can change dynamically.

The Udayakumaran approach avoids pointer aliasing by
assigning each object to a fixed location, either in scratchpad
or external memory. This fixed location is determined at
runtime by a new implementation of malloc. Addresses do
not change so pointer aliasing is not an issue, and because
allocations are carried out at runtime, object sizing is not

an issue. However, the approach is not time-predictable
because the latency of memory access operations depends
on the locations of objects, which are unknown offline.

The Udayakumaran approach uses whole-program pointer
analysis to prevent the effects of pointer invalidation. Point-
ers are still invalidated when objects are moved, but whole-
program pointer analysis ensures that accesses to those ob-
jects only occur while they are loaded into scratchpad. This
is not a perfect solution; inefficient safe assumptions will be
made in some cases.

An alternative approach would eliminate pointers alto-
gether, e.g. by using a restricted language subset [14] or by
removing the assumption of a single uniform memory space
shared by all parts of a program, so that programs can be
efficiently compiled for the scratchpad paradigm [2]. How-
ever, these approaches could be seen as too restrictive, since
they reduce the available language feature set and break
compatibility with legacy software, inhibiting code reuse.

4. TIME-PREDICTABLE SOLUTION
Hard real-time tasks can benefit from scratchpads if every

memory access operation can be classified offline as “exter-
nal memory” or “scratchpad”, since this simplifies WCET
analysis while providing a way to reduce the latency of most
memory accesses.

Scratchpad allocation algorithms demonstrate that a sub-
set of the data used by a program can be allocated to the
scratchpad in order to minimize the estimated WCET [6,32].
However, solutions to the problems posed by object sizing,
pointer aliasing and pointer invalidation need to be found
before pointers and dynamic data structures can be used
in hard real-time tasks. The solution must retain time-
predictability (every memory access must have a known la-
tency) and avoid any requirement for whole-program pointer
analysis, since this would restrict the set of programs that
could be supported.

4.1 Objects, Base Pointers and Offsets
Conventionally, an object i of size si occupies a range of

contiguous logical memory addresses [bi, bi + si], where bi

is the base pointer of i. The base pointer holds the lowest
address allocated to i.

Previous scratchpad allocation approaches have tracked
each object i using whole-program pointer analysis, finding
all accesses to i. However, this is unnecessary. Consider that
all memory accesses to i can be decomposed into the form
of base pointer bi plus an offset o. The effective address of
a memory access operation x using i is:

Aix = bi + ox (1)

In a correct program [13], Aix ∈ [bi, bi + si]. Additionally,
every section of code that uses i will obtain bi first.

This gives an opportunity to load i into scratchpad before
it is accessed. The actual value of bi and the identity of
object i are unknown offline. bi is determined at runtime,
and at that point, the memory at [bi, bi + si] can be moved
into scratchpad before any address Aix is accessed. This
guarantees that every access to i is directed to scratchpad.

Base pointers have been useful to earlier research [9], where
parts of objects have been prefetched into cache using mem-
ory locations that are computed dynamically by adding off-
sets (derived from loop iteration counters) to a base pointer
that is unknown before execution. The same principle is

used here to ensure that an object is moved into scratch-
pad before access at runtime without knowing the object’s
location (bi) or its identity (i) offline.

4.2 Object Sizing
The maximum possible size si of each object i that might

be accessed by instruction x must be known offline, so that
(1) the amount of scratchpad space required can be deter-
mined, and (2) the copying time can be calculated. si is easy
to determine at compile time if x only refers to a known sub-
set of statically-allocated data (section 3.3). si is also easily
determined if every object that could be referenced by x
has a fixed size. However, x may also refer to dynamically-
allocated data with a size unknown to the compiler.

The problem of determining si is similar to the issue of
loop bounds within hard real-time tasks. Loop bounds are
needed for WCET analysis [26] and may be obtained auto-
matically in some cases [7], but the programmer is usually
expected to specify them using code annotations. The same
applies to object sizes when they cannot be determined au-
tomatically. The problems are so similar that si could even
be derived from a loop bound in the case of iteration though
an array.

4.3 Logical and Physical Addresses
The key to solving both aliasing and invalidation prob-

lems is to separate logical and physical addresses, since this
allows an object i to be resident at an unchanging logical ad-
dress bi even if it is moved to a new physical address (e.g. in
scratchpad). Let f be a remapping function f : L �→ P
that translates a logical address L to a physical address
P . An object i always occupies a range of logical addresses
[bi, bi + si]. Before the object is mapped to scratchpad, it
also exists at physical address bi. When the object is moved
to scratchpad, a new copy is created at physical address
ti. The remapping function accounts for this change by ad-
justing logical addresses in the range bi ≤ L < bi + si so
that the copy in scratchpad is used by every memory access
referencing i:

P = f(L) =

j
L + ti − bi if ∃i, bi ≤ L < bi + si

L otherwise
(2)

The logical address of the object i remains L, so pointers are
not invalidated by relocation. Aliases of i work correctly,
as the mapping between logical addresses and physical ad-
dresses is always 1-1.

For example, imagine a computer with 100 words of mem-
ory. Physical addresses 0 through 89 refer to external mem-
ory, while 90 through 99 refer to scratchpad. Suppose object
j is located at physical address 10 and has size sj = 5. j
is not mapped to scratchpad, so an access to logical address
10 goes to external memory: f(10) = 10. j occupies phys-
ical and logical address range [10, 15]. Next, j is mapped
to scratchpad at physical address tj = 90. j now occu-
pies physical address range [90, 95], and an access to logical
address 10 is routed to the new location: f(10) = 90. A
program accessing address 10 sees no change in functional-
ity. The operation is faster but produces the same result. j
was moved, but retained logical addresses [10, 15].

f can be easily extended to allow more than one object
(i0 ... iN−1) to be loaded into scratchpad simultaneously, al-
though the maximum number of objects N is fixed at design
time. f must account for the possibility that objects might

Figure 2: (a) Conflict misses can occur during preloading, evicting objects that were preloaded earlier. (b) An
N-way associative cache can be used to isolate each object in its own cache way, but this leads to inefficient
use of cache space when objects do not fill an integer number of ways. (c) The SMMU table decouples
associativity from storage, so resources are used more efficiently.

overlap with each other in the logical address space due to
pointer aliasing. This is handled by enforcing a priority en-
coding on the copies. If the memory used by two objects
overlaps, the highest-numbered object is always considered
the most recent (equation 3). f requires 2N comparisons in
the worst case. We note that hardware can implement all
comparisons in parallel, as N is constant.

P = f(L) =

8>><
>>:

L + ti − bi if ∃i, (bi ≤ L < bi + si) ∧
∀j, (j ≤ i
∨ ¬[bj ≤ L < bj + sj])

L otherwise

(3)

4.4 Possible Implementations
The logical to physical address mapping performed by f

(equation 3) could be implemented by the address compar-
ison hardware within an associative cache (at the cost of
some granularity, as each range [bi, bi + si] would need to
be aligned to the cache line size). Instead of copying i into
scratchpad, i could be preloaded into a locked cache [22].
Given sufficient cache space, this would guarantee that ev-
ery access to i would be a cache hit [9].

However, if N objects needed to be preloaded, this would
be prone to conflict effects: a preloading operation for object
Y could evict part of object X. Like a conflict miss, the
extent of this effect would be entirely dependent on the base
pointer values bX and bY (Figure 2(a)). A higher degree of
cache associativity (say, N -way) would allow up to N objects
to be preloaded and locked in cache simultaneously, but each
object would only be able to take up an integer number of
“ways”. Unless the number of ways was very large, this
would be inefficient, with wasted space wherever an object
did not exactly fill its allotted space (Figure 2(b)).

A fully associative cache would seem to be an ideal solu-
tion, because the size of each “way” is a single cache line [11].
However, the high energy usage and high logic area usage
of the required content addressable memory (CAM) limits
the practical size of a fully associative cache [8]. An ob-
ject of size s would require O(s) cache lines, and therefore
O(s) CAM resources, so the cache would be limited to small
numbers of small objects.

Resources would be used more efficiently if there were

Figure 3: The relationship between the CPU,
SMMU and external memory.

O(N) comparators for N objects. Caches are no substitute
for f as implemented by equation 3, because f decouples
the associativity which matches addresses from the actual
storage space for objects, meaning that O(1) comparators
are required for an object regardless of its size.

The proposed hardware is the scratchpad memory man-
agement unit (SMMU), which implements remapping func-
tion f (equation 3) and a form of DMA controller that moves
data between the scratchpad and the external memory. Us-
ing the SMMU, each object can be of any size, subject to
scratchpad space limitations (Figure 2(c)). This means that
fewer comparators are needed - instead of O(

P
si), just

O(N) are required for N objects.

5. THE SCRATCHPAD MMU
The scratchpad memory management unit (SMMU) trans-

lates logical addresses (from a CPU) into physical addresses
which can be directed to a data scratchpad or external mem-
ory (Figure 3). It is a hardware implementation of equation
3, combined with a DMA controller for moving data be-
tween scratchpad and external memory. For simplicity, it is
assumed that the external memory is static RAM, so each
DMA transfer is time-predictable.

The SMMU implementation is a table of minimum (bi)
and maximum (bi+si) logical address pairs, one for each ob-
ject i mapped into scratchpad. Objects are only mapped and
unmapped at the direction of the program. The SMMU pro-
vides transparent access to memory, i.e. the logical address
of an object is unchanged by mapping and unmapping.

Figure 4 shows the internal structure of the SMMU, which
implements equation 3. A logical address L is generated by
the CPU and received on the left of Figure 4. It is compared
to the SMMU table (A) which contains N = 2n groups of
the following registers:

���������

�

�

���������

�

�

���

	

��

�
�

�
�

�
�

�
�

�

��
����

	���
��
�

����

���

���

��

����

��
�

�
��

��������

����

���

�
!

�

�	
�

�
∀

�

�
�

#
��

�
�
��

�
�

�

�
�

��
�

	
!

	�������

���
���

Figure 4: Scratchpad memory management unit (SMMU) hardware.

• minimum: minimum logical address of the object (bi).

• maximum: minimum plus the object size (bi + si).

• offset: the value to be added to L to convert it into a
physical address in scratchpad memory (ti).

• valid: a single bit that is 1 for valid table entries.

L matches if it is between minimum and maximum for some
entry. If any of the 2n groups matches the incoming address,
then the match output (B) is asserted. If two or more match,
then two objects overlap, and the highest-numbered match
is selected by a priority encoder (C) and used as the n-bit
select input for a multiplexer (D). This gives the physical
address P ; it is passed to the scratchpad memory (E).

Addresses that match inside table A are serviced quickly.
Not all addresses will match. For example, some logical ad-
dresses may be used for IO and some objects may not be
mapped to the scratchpad at all (e.g. because they are too
large to fit, or because the cost of transferring them into
scratchpad is greater than the time saved by not access-
ing external memory). If an address does not match, then
P = L, and the SMMU services the access operation using
external memory.

5.1 SMMU Operations
The SMMU is a little more complex than illustrated in

Figure 4 because two further operations are required. These
are OPEN and CLOSE; they map and unmap areas of exter-
nal memory into scratchpad. This process must copy data
from/to external memory and consider the objects that are
already mapped into scratchpad in order to deal with the
issue of overlapping memory in the logical address space.
A priority encoding in equation 3 ensures that the highest-
numbered row in the SMMU table is considered to contain
the most up to date copy in the event of overlapping. (Ex-
ternal memory always contains the least up to date copy.)
OPEN and CLOSE can be used directly by a programmer
(e.g. Figure 5) or placed automatically by a scratchpad al-
location algorithm (section 5.2).

OPEN takes three parameters: logical base pointer ad-
dress bi, object size si, and physical copy location ti. The
contents of logical addresses in the range [bi, bi + si] are
copied using DMA from external memory into the scratch-
pad (physical address range [ti, ti + si]). The DMA process
uses remapping function f to translate each logical address

Figure 5: OPEN and CLOSE, added by hand.

L ∈ [bi, bi + si] to a physical address P = f(L). If the log-
ical address is not mapped to scratchpad, then L = P and
the data is taken from external memory. If L
= P , then P
must be a scratchpad memory address containing the pre-
vious most recent copy of the data at L. In this case, the
data must be taken from scratchpad.

The OPEN operation creates an entry in the table for i
(Figure 4, A) so that future memory access operations can
access the contents of i from scratchpad instead of external
memory. To use OPEN, the program must guarantee that
the physical scratchpad space [ti, ti + si] is unused. OPEN
is time-predictable, as it has a maximum time bound which
can be computed as a function of si. ti can be specified by
the programmer, but generating this value is really a task
for a scratchpad allocation algorithm: existing algorithms [6]
already specify methods for doing this.

CLOSE takes one parameter: a table reference i as re-
turned by OPEN. It reverses the OPEN operation associ-
ated with that reference, writing the scratchpad contents
[ti, ti + si] back to external memory ([bi, bi + si]). As with
OPEN, the DMA process uses f to translate each logical
address L ∈ [bi, bi + si] to a physical address P = f(L), and
if L
= P , then the data is written to scratchpad memory at
address P . CLOSE has the same time bound as OPEN.

The timing of a memory access operation may be calcu-
lated for WCET analysis purposes by inspecting the code
to determine the base pointer used to generate the effective
address (equation 1). If the object associated with the base
pointer has been OPENed, then the memory access can be
guaranteed to be serviced quickly (section 4.1). Otherwise,
the WCET analysis tool must assume that the memory ac-
cess requires the external memory, which will be slow.

5.2 Allocation Algorithm
An existing scratchpad allocation algorithm can be ex-

tended to support the SMMU. For example, the algorithm
specified by Deverge [6] may be extended by:

Component Critical path Max. freq/
MHz

SMMU Across a table comparator 143
Microblaze In “Shift Logic Module” 162
Both Microblaze ALU + Table 111

Table 3: The maximum clock frequency for various
components of the FPGA implementation, identified
using Xilinx synthesis tools.

• Using OPEN and CLOSE to transfer data between
external memory and scratchpad: these replace the
DMA commands currently in use.

• Placing an upper limit of 2n on the total number of
objects that can be in use simultaneously. This is an
additional constraint in the integer linear program.

• Replacing the notion of “variables” within the algo-
rithm with “objects”. From section 4.1, an object i
comes into existence whenever a base pointer bi is cre-
ated by an instruction. It continues to exist as long as
that base pointer may form part of an effective address.
The link between a memory access operation and the
variables that it might access becomes irrelevant. With
the SMMU, it is only important to link memory access
operations with base pointers: a simpler problem that
does not require whole-program pointer analysis, only
local analysis within a single function.

Other parts of the algorithm can be retained, such as the
assignment of objects to locations in the scratchpad (used
to generate each ti), and the iterative process of WCET
reduction to account for new worst-case execution paths.

6. SMMU EVALUATION
This section presents evidence to show that the SMMU is

practical. It is evaluated in three different ways. The first of
these looks at the properties of a hardware implementation
(section 6.1). The SMMU is then applied to a single function
(section 6.2) and an entire program (section 6.3).

6.1 Hardware Implementation
The SMMU hardware is quite different to a conventional

data cache. In a typical cache design, the low bits of the
address are sent directly from the CPU to the tag and data
memory of each “way” of the cache [11]. Suppose that this
happens in clock cycle z. The mechanism only becomes
aware of whether the access is a hit or miss during clock cycle
z + 1, when the tag can be compared with the high address
bits. Conversely, the SMMU design must determine whether
an access matches within the table during clock cycle z,
because this information is required in order to compute the
physical address (the offset must be known). Therefore, the
use of an SMMU can change the location of the critical path,
since more combinational logic is needed before the on-chip
memory is accessed. (The critical path sets the upper bound
on the clock frequency, since it is the slowest path through
combinational logic.)

Experiments with an FPGA implementation of the SMMU
indicate that this can be a problem for some CPUs. A VHDL
model of the SMMU was implemented and synthesized for

Figure 6: The effect of the table size and the number
of address bits on the maximum clock frequency.

a Xilinx Virtex-5 FPGA using the Xilinx Embedded Devel-
opment Kit (EDK) software [38]. The Xilinx ML505 pro-
totyping board was used as a host [40]. The SMMU model
connects via a Processor Local Bus (PLB) master interface
to any memory controller that is supported by EDK. Four
Virtex-5 block RAMs are used as the scratchpad memory.
Virtex-5 FPGA implementations of hardware are not as fast
or as dense as fully custom silicon implementations, so all of
the clock frequencies could increase for an application spe-
cific integrated circuit (ASIC) implementation.

Table 3 shows how the maximum clock frequency of the
SMMU changes when the Microblaze CPU [39] is intro-
duced. In isolation, the clock frequency of the SMMU and
Microblaze are both reasonable, but when the two are com-
bined, the critical path passes through the Microblaze ALU
because the ALU computes the effective address for every
load or store operation. This limits the maximum clock fre-
quency; the ALU is already one of the slower parts of the
CPU due to the carry chain that runs through it.

This effect can be reduced by changing the table size (Fig-
ure 6). It is clear that large tables (32, 64 entries) have a
negative impact on the maximum frequency; an extra delay
exists because of the spacing between the elements and the
larger multiplexer. The ideal size for the table is a question
for future work.

6.2 Timing of a C Function
This section returns to the example of Figure 1 to see

what benefit is provided by the SMMU and its associated
scratchpad. Manual placement of OPEN and CLOSE oper-
ations is used to map the nine objects used by the function
into scratchpad memory. The sizes of each array are given
in Table 4 along with sample transfer costs. In this case, all
of the objects are dynamically allocated.

The hardware model used for Table 2 is extrapolated to
find the general cost of a scratchpad operation as follows.
From footnote 2, a cache hit costs 1, a non-memory opera-
tion costs 0, and a cache miss costs 50 clock cycles. Assume
that a cache miss transfers exactly one line (16 bytes). If
the memory bus frequency is the same as the CPU core
frequency and 4 bytes are transferred per clock cycle, then
the bus transaction setup time is 46. Assuming that burst-
mode transactions can have any size, the cost of transferring
x bytes (e.g. for OPEN or CLOSE) is 46+ �x

4
�. Notice that

the bandwidth of the memory bus is high (one word per clock
cycle), but so is the access latency, because it takes 46 clock

Name Size/ Transfer cost
bytes OPEN CLOSE

inptr0 1152 334 334
inptr1 1152 334 334
inptr2 1152 334 334
outptr 3456 910 910
range limit 1408 398 398
Crrtab 1020 301 301
Crgtab 1020 301 301
Cbgtab 1020 301 301
Cbbtab 1020 301 301
Total 12400 3514 3514

Table 4: The sizes and OPEN/CLOSE costs of the
nine objects referenced by Figure 1, assuming the
hardware model of Table 2.

cycles to begin a transaction. This appears to be typical of
real designs (Table 1).

The OPEN and CLOSE operations allow the SMMU and
scratchpad to act as a perfect data cache for a subset of
the program’s data: specifically, the OPENed objects. The
uncertain cost of cache misses is replaced by the known cost
of the transfer operation, requiring 7028 clock cycles for each
execution of Figure 1. Since Figure 1 is called 864 times
(once for every row of the image), the total transfer cost is
6072192. This leads to an execution time of 19014912 when
calculated using the criteria for Table 2. This is 1.05 times
slower than the “best” cache case, but 11.8 times faster than
the “worst” cache case (Figure 7).

Better performance would be achieved if num rows
= 1, be-
cause the five objects that represent lookup tables (Crrtab,
etc.) could stay resident between iterations [38]. These ta-
bles remain in cache if there is (1) enough space and (2)
no conflict miss occurs. This persistence is one of the ways
that data caches can outperform the SMMU and scratchpad
in ideal conditions. On-demand loading of data can also be
more efficient than simply preloading everything; for exam-
ple, most elements of range limit are never used, but the
entire object has to be loaded to ensure that every access
operation has constant timing.

These disadvantages mean that the SMMU and scratch-
pad can be slower than a data cache in the average case.
The combination benefits hard real-time tasks: 19014912 is
both the worst case and the best case. However, the en-
ergy benefits gained through the use of a scratchpad must
also be considered [31]. The energy overhead of the SMMU
is small because relatively little hardware is needed to im-
plement it [38], so the SMMU can simplify the process of
automatic scratchpad allocation for any program, not just
real-time tasks, enabling data caches to be removed from
non real-time embedded systems.

6.3 JPEG Decoding Program
In this section, evidence is taken from a case study [38]

using a complete JPEG decoder [12] to support the claim
that the SMMU is widely applicable and indicate the cases
where it is less effective. This part of the evaluation makes
no distinction between dynamically allocated data and data
on the stack (automatic variables): the SMMU is used to
map both into scratchpad within significant libjpeg func-
tions (Figure 8). These account for 87% of the execution

������������	�
�����
�

���	�
���������
����
�

���������������
�����
�

��������������������

� ��� ��� ��� ��� ��� ��� ��

!���

��∀���#�∀��∀��
��∃�����%������
&

Figure 7: Data access times for Figure 1 in four
scenarios: “best” and “worst” cases for a 16kb data
cache (Table 2), using external memory only, and
using the SMMU.

Figure 8: JPEG decoding functions [12] considered
by the case study [38].

time during decoding of the image used for Table 2. OPEN
and CLOSE operations were added to these functions, as-
suming a scratchpad size of 16kb and a table size of 16.
Table 5 shows the effect of OPEN and CLOSE on the exe-
cution time of each function.

Overall, 90% of memory operations are routed to scratch-
pad, but the remaining 10% are still significant, accounting
for 61% of the execution time, as each external memory ac-
cess costs more than a scratchpad access. The result is 4.23
times slower than a perfect data cache. In order to improve
this, the remaining functions must also use the SMMU in or-
der to reduce this. Automatic scratchpad allocation would
be important here, as there are many rarely-used functions
in libjpeg. Within the most commonly used functions, the
SMMU is useful, but two problems limit its benefit:

Firstly, some objects are too small to be effectively mapped.
18% of accesses in jpeg idct fast are store operations to the
output buffer. These are a problem for OPEN and CLOSE
because of their fragmented access pattern: jpeg idct fast

Execution Time
Function External SMMU Coverage

memory
jpeg idct fast 15.5 1.72 99.8%
decode mcu 10.1 4.77 59.4%
decompress onepass 13.1 3.18 86.7%
ycc rgb convert 29.2 1.25 99.9%
JPEG decoder 16.1 4.23 89.8%

Table 5: Normalized execution times of functions
from Figure 8. “Coverage” indicates the percentage
of memory operations routed to scratchpad.

produces square blocks of 8 by 8 pixels, so the largest object
is 8 bytes. Small objects do not respond well to OPEN and
CLOSE because the bus transaction setup time becomes
significant. In this case, knowledge about the code can be
applied to combine blocks together. However, this is not
always possible. next input byte references input data from
the JPEG file, an object of unbounded size that is accessed
one byte at a time. Here, OPEN and CLOSE are no better
than direct access to external memory. This problem could
only be resolved by the programmer, who could refactor the
code to make more effective use of resources (e.g. copying
input data into a small temporary buffer).

Secondly, some objects are too large to be mapped. For
example, decode mcu uses lookup tables referenced by point-
ers named actbl and dctbl. Many possible tables may be
referenced by these pointers, making OPEN and CLOSE ex-
tremely inefficient, and accesses are sparse: only a few bytes
may be used from each. The obvious solution is to OPEN at
an earlier point but this is ineffective because of the number
of tables that could be referenced. All would need to be
OPENed together. The tables are too large (11392 bytes in
total) and accesses within them are too sparse to make good
use of OPEN and CLOSE. Again, this problem could only
be resolved by the programmer.

The price of time predictability is a greater average ex-
ecution time in many cases. However, the increase is not
as great as might be feared. Within the functions consid-
ered, most memory operations could be routed to scratch-
pad with corresponding decreases in both the average and
worst-case execution times. In two cases, jpeg idct fast and
ycc rgb convert, the result approaches that of a perfect data
cache, and the other cases are still far better than accesses
to external memory.

7. RELATED WORK
This work fits into a recent research effort to specify com-

puter architectures where time predictability is as impor-
tant as functional correctness [2, 28]. In this field, much re-
search has been focused on the CPU [10,19,37], where worst-
case behavior can be difficult to determine. Specific prob-
lems found in conventional designs include timing anoma-
lies [18] and effects that can occur in branch predictors.
Some examples of these problems in real CPUs are dis-
cussed by Heckmann et al. [10]. CPU analysis often as-
sumes a time-predictable memory subsystem (e.g. perfect
data caches [19]), while explicitly time-predictable CPU de-
signs assume that scratchpads will be used [16, 24, 37]. All
of this work could benefit from the SMMU.

Previous work has attempted to address the problem of
bounding the latency of memory access operations through
cache analysis. Instruction cache analysis is now quite a
mature topic [20], but data cache analysis remains limited
to code that uses predictable reference strings [29,34].

Schoeberl proposes improvements to the data cache sub-
system to reduce conflict misses and simplify WCET esti-
mation [27]. The proposal splits the data cache into several
parts, each for a different form of data, e.g. heap, static and
stack. Alternate designs can be used in each case, such as a
fully associative cache for heap data to solve the conflict miss
problem. However, the SMMU may be a better solution for
static and heap data because (1) timing is not dependent
on the reference string, and (2) the limited resources of the
SMMU table can be applied to objects of any size, whereas

the limited resources of a practical fully associative cache
impose a strict size limit (section 4.4).

Full support for pointers may not be necessary in time-
predictable code. It can be argued that hard real-time tasks
are a special case where restrictions such as “no pointers”
are not a problem [14]. This work also presumes that C
and Java code should be largely unchanged by the use of
a scratchpad, but other researchers believe that languages
should evolve beyond C and Java to better match the capa-
bilities of real hardware. For example, actor oriented pro-
gramming removes the assumption of a single uniform mem-
ory space that is shared by all parts of a program, allowing
for an efficient mapping onto the scratchpad paradigm [2].

Application-specific control of resources is often advan-
tageous in energy-constrained embedded systems. Conse-
quently, some scratchpad management techniques optimize
for energy reduction rather than WCET [15, 33], which is
also facilitated by the replacement of data caches with a
scratchpad [31]. The benefits of application control of mem-
ory resources are explored in [21].

8. CONCLUSION
This paper has described problems facing the implemen-

tation of time-predictable load and store operations. Some
of these are consequences of data caches, while others occur
when scratchpads are used to store dynamic data. This pa-
per has explained that previous solutions have attempted to
solve these problems in ways that do not meet the require-
ments of hard real-time tasks. It has proposed and evaluated
a new solution in the form of a scratchpad combined with a
scratchpad memory management unit (SMMU).

The SMMU acts as a perfect data cache for a subset of the
data used by a program. Using the SMMU, the execution
time of a program may be independent of its reference string,
any form of data can be used including dynamic data struc-
tures, and whole-program pointer analysis is not required.
The SMMU allows hard real-time tasks to take advantage
of pointers and reduces the effort required to add scratch-
pad support to a program. It can be used with scratchpad
allocation algorithms in previous work.

Evidence shows that the SMMU works as specified, has a
reasonable hardware cost, and can be applied to real C code.
Its design is quite different to that of a conventional cache
(section 6.1). The SMMU has been successfully applied to
functions within an example program (sections 6.2 and 6.3).
These functions could not be fully supported by WCET
analysis for data caches or previous automatic scratchpad
allocation approaches. While the SMMU and scratchpad
are not as effective as a data cache in ideal conditions, they
are considerably better than a data cache in worst-case con-
ditions. As the size of the SMMU is proportional to the
number of objects it can contain rather than the maximum
scratchpad size, the energy and space advantages of scratch-
pads versus caches are retained by the SMMU approach.
Further work is being carried out to understand how often
the SMMU can be useful in typical programs.

9. ACKNOWLEDGMENTS
Thanks go to Martin Schoeberl, Andy Wellings and Ian

Gray for their reviews of drafts of this paper and helpful
discussions. Thanks also to the EMSOFT reviewers whose
comments were helpful in revising this paper.

10. REFERENCES
[1] ARM. Platform Baseboard for ARM11 MPCore.

http://www.arm.com/products/DevTools/

PB11MPCore.html.

[2] S. Bandyopadhyay, F. Huining, H. Patel, and E. Lee.
A scratchpad memory allocation scheme for dataflow
models. Technical Report UCB/EECS-2008-104,
EECS Department, UCB, Aug 2008.

[3] A. Burns and A. J. Wellings. Real-Time Systems and
Programming Languages. Addison Wesley, 2001.

[4] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis
of pointers and structures. In Proc. PLDI, pages
296–310, 1990.

[5] P. J. Denning. Virtual memory. ACM Comput. Surv.,
2(3):153–189, 1970.

[6] J.-F. Deverge and I. Puaut. WCET-Directed Dynamic
Scratchpad Memory Allocation of Data. In Proc.
ECRTS, pages 179–190, 2007.

[7] A. Ermedahl and J. Gustafsson. Deriving annotations
for tight calculation of execution time. LNCS,
1300:1298–1307, 1997.

[8] S. Furber. ARM System-on-Chip Architecture.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[9] E. H. Gornish and A. Veidenbaum. An integrated
hardware/software data prefetching scheme for
shared-memory multiprocessors. Int. J. Parallel
Program., 27(1):35–70, 1999.

[10] R. Heckmann, M. Langenbach, S. Thesing, and
R. Wilhelm. The influence of processor architecture on
the design and the results of WCET tools. Proc.
IEEE, 91(7):1038–1054, 2003.

[11] J. L. Hennessy and D. A. Patterson. Computer
Architecture, Fourth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2006.

[12] Independent JPEG Group. http://www.ijg.org/.

[13] R. W. M. Jones and P. H. J. Kelly.
Backwards-compatible bounds checking for arrays and
pointers. In Proc. AADEBUG, pages 13–26, 1997.

[14] R. Kirner and P. Puschner. Discussion of
Misconceptions about WCET. In Proc. WCET, pages
61–64, 2003.

[15] L. Li, L. Gao, and J. Xue. Memory coloring: A
compiler approach for scratchpad memory
management. In Proc. PACT, pages 329–338, 2005.

[16] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards,
and E. A. Lee. Predictable programming on a
precision timed architecture. In Proc. CASES, pages
137–146, 2008.

[17] T. Lundqvist and P. Stenström. A method to improve
the estimated worst-case performance of data caching.
In Proc. RTCSA, page 255, 1999.

[18] T. Lundqvist and P. Stenström. Timing anomalies in
dynamically scheduled microprocessors. In Proc.
RTSS, page 12, 1999.

[19] S. Mohan and F. Mueller. Merging state and
preserving timing anomalies in pipelines of high-end
processors. In Proc. RTSS, pages 467–477, 2008.

[20] F. Mueller. Timing analysis for instruction caches.
Real-Time Syst., 18(2-3):217–247, 2000.

[21] A. Patil. Application-specific resource management in
real-time operating systems. PhD Thesis
YCST-2007-25, University of York, 2007.

[22] I. Puaut. Cache analysis vs static cache locking for
schedulability analysis in multitasking real-time
systems. In Proc. WCET, Vienna, Austria, June 2002.

[23] I. Puaut and C. Pais. Scratchpad memories vs locked
caches in hard real-time systems: a quantitative
comparison. In Proc. DATE, pages 1484–1489, 2007.

[24] P. Puschner. Is worst-case execution-time analysis a
non-problem? – towards new software and hardware
architectures. In Proc. WCET, 2002.

[25] P. Puschner and A. Burns. Guest editorial: A review
of worst-case execution-time analysis. Real-Time Syst.,
18(2-3):115–128, 2000.

[26] P. Puschner and A. Schedl. Computing maximum task
execution times - a graph-based approach. Real-Time
Syst., 13(1):67–91, 1997.

[27] M. Schoeberl. Time-predictable cache organization. In
Proc. STFSSD, March 2009.

[28] M. Schoeberl. Time-predictable computer
architecture. EURASIP Journal on Embedded
Systems, vol. 2009, Article ID 758480:17 pages, 2009.

[29] R. Sen and Y. N. Srikant. WCET estimation for
executables in the presence of data caches. In Proc.
EMSOFT, pages 203–212, 2007.

[30] Simtec. EB110ATX (codename CATS).
http://www.simtec.co.uk/products/EB110ATX/.

[31] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar,
M. Balakrishnan, and P. Marwedel. Reducing energy
consumption by dynamic copying of instructions onto
onchip memory. In Proc. ISSS, pages 213–218, New
York, NY, USA, 2002. ACM Press.

[32] V. Suhendra, T. Mitra, A. Roychoudhury, and
T. Chen. WCET Centric Data Allocation to
Scratchpad Memory. In Proc. RTSS, pages 223–232,
Washington, DC, USA, 2005. IEEE Computer Society.

[33] S. Udayakumaran, A. Dominguez, and R. Barua.
Dynamic allocation for scratch-pad memory using
compile-time decisions. Trans. on Embedded
Computing Sys., 5(2):472–511.

[34] X. Vera, B. Lisper, and J. Xue. Data cache locking for
tight timing calculations. Trans. on Embedded
Computing Sys., 7(1):1–38, 2007.

[35] J. Whaley and M. S. Lam. Cloning-based
context-sensitive pointer alias analysis using binary
decision diagrams. In Proc. PLDI, pages 131–144,
2004.

[36] J. Whitham. Virtual Lab - Board Server Hardware.
http://www.jwhitham.org.uk/c/vlab/fx12hw.html.

[37] J. Whitham and N. Audsley. Predictable Out-of-order
Execution Using Virtual Traces. In Proc. RTSS, pages
445–455, 2008.

[38] J. Whitham and N. Audsley. The Scratchpad Memory
Management Unit for Microblaze: Implementation,
Testing, and Case Study. Technical Report
YCS-2009-439, University of York, 2009.

[39] Xilinx. Microblaze processor reference guide. Manual
UG081, Xilinx Corporation, 2005.

[40] Xilinx. ML505 User Guide. Manual UG347, 2008.

