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Abstract

Real-time systems design involves many important
choices, including that of the processor. The fastest proces-
sors achieve performance by utilizing architectural features
that make them unpredictable, leading to difficulties prov-
ing offline that application process deadlines will be met,
in the worst-case. Utilizing slower, more predictable pro-
cessors, may not provide sufficient instruction throughput
to execute all required application processes. This exposes
a key trade-off in processor selection for real-time systems:
predictability versus instruction throughput.

This paper proposes MCGREP, a novel CPU architec-
ture that combines predictability, high instruction through-
put and flexibility. MCGREP is entirely microprogrammed,
with multiple execution units. Basic operation involves im-
plementation of a conventional set of CPU instructions in
microcode - MCGREP then executes object code suitably
compiled. Advanced operation allows the application to
dynamically load new microcode, enabling new application
specific instructions to increase overall performance.

MCGREP is implemented upon reconfigurable logic
(FPGA) - an increasingly important platform for the embed-
ded RTS. Custom microcode configurations for new instruc-
tions are generated from C source. MCGREP is shown to
have performance comparable to two popular FPGA soft-
core CPUs (OpenRISC and Microblaze, the latter a com-
mercial product). Flexibility is demonstrated by implement-
ing an existing instruction set (OpenRISC) in microcode,
with application-specific instructions to improve overall
performance. As a further demonstration, predictable two-
level interrupt and synchronization mechanisms are pro-
grammed in microcode.

1 Introduction

Real-time systems (RTS) are characterized by the prop-
erty that timing behavior is an essential part of correctness.
Ultimately, bounded and predictable timing behavior of a

RTS is dependent upon the implementation platform (often
involving a CPU) to itself to be predictable and bounded
from a timing perspective. We observe that RTS are imple-
mented on a wide range of platforms (hardware devices),
utilizing a wide range of architectures (computer system
structure as seen at the assembly level). However, all archi-
tectural choices for a particular RTS involve tradeoffs. This
paper examines some of the fundamental tradeoffs that exist
when making an architectural choice for an RTS, and then
proposes MCGREP, a CPU architecture that provides high
predictability, high performance and high flexibility.

MCGREP is motivated by the need for a CPU that oper-
ates predictably: i.e. with fixed timing behavior that is un-
affected by execution history (e.g. cache state). Whilst sim-
ple processors already have this property, they are unable to
match the performance of complex CPUs as their execution
speed is bounded by the speed of memory accesses. More
complex CPUs make use of caches and internal tables in or-
der to speed up the average case, but this makes worst-case
execution time (WCET) analysis more difficult [10].

High performance systems can already be built pre-
dictably, but often dispense with the CPU. For example, ap-
plication specific circuits may be synthesized directly from
source algorithms (e.g. NISC [19]), the target platform be-
ing an application specific integrated circuit (ASIC). How-
ever, such approaches result in systems without hardware
flexibility - the ability to add new features to a system
without rebuilding the hardware. For this reason, such ap-
proaches are disregarded by this work.

Another approach combines a CPU with custom hard-
ware. An application specific instruction set processor
(ASIP) [7] tool generates a processor description with hard-
ware support for user functions. The speedup from these
can eliminate the need for a cache. ASIP systems are flexi-
ble, as software can be changed, but the hardware is fixed.

Other approaches attempt to restrict the use of a fast (un-
predictable) processor so that sufficient predictability can be
obtained. For example, restricting cache use [3] and mon-
itoring execution times [1] are both applicable. However,
in this paper we contend that developing a fast predictable



processor is a more appropriate and scalable solution.
MCGREP applies ideas from the field of run time recon-

figurable hardware to build a CPU that is ideal for real-time
systems. In MCGREP key parts of the hardware can be re-
defined during execution. As in an ASIP, the speedup from
this may permit an acceptable operating speed without any
need for a cache. However, unlike an ASIP, many different
configurations can be stored in program memory.

MCGREP currently targets a field-programmable gate
array (FPGA) platform, now used as a popular base for
small embedded systems due to low cost and customiza-
tion capabilities. FPGAs are limited in both capacity and
speed compared to an ASIC, but are reprogrammable allow-
ing more flexibility [15]. Softcore processors (e.g. Open-
RISC [12] and MicroBlaze [2]) implemented on FPGAs
lack some of the performance of CPUs implemented di-
rectly in silicon. However, the overall system performance
is comparable, as an FPGA allows many functional units
to share a single device (e.g. softcore processor, RAM, de-
vices), and allows application specific support to be pro-
grammed using logic gates. Additionally, nothing prevents
the future implementation of MCGREP in silicon, as MC-
GREP is not dependent on any FPGA-specific feature.

This paper is structured as follows. The rest of this sec-
tion summarizes architectural tradeoffs. Section 2 describes
the reasoning behind MCGREP, including a review of re-
lated work in section 2.3. Section 3 gives an architectural
overview and section 4 provides an evaluation against the
architectural tradeoffs identified here. Section 5 describes
some of the ways in which the flexibility of MCGREP may
be used to support an RTS, and section 6 concludes.

1.1 Background

The architecture of a machine includes the instruction
set architecture (ISA) of the CPU, co-processors, and any
other devices connected to the system bus. It is the lowest
level seen during programming. The remainder of this sec-
tion considers the fundamental predictability, performance,
flexibility and resource trade-offs when choosing a partic-
ular CPU-based architecture for a RTS. The trade-offs are
considered across the following five architecture variants:

• Simple CPU (example: Motorola 68000)
A CPU without caches or a complex pipeline.

• Complex CPU (example: PowerPC 405)
A CPU with caches and/or a complex pipeline.

• ASIP (example: Tensilica Xtensa [7])
A CPU with custom extensions. It is assumed that
caches and complex pipeline features are turned off.

• FGRA (example: Molen [25])
Fine-grained reconfigurable arrays (FGRAs) extend a

conventional processor (assumed to be simple here)
with an FPGA-like area which can be programmed
with user-specified hardware devices during operation.
This permits a program to introduce whatever hard-
ware it requires.

• CGRA (example: ReRisc [24])
Coarse-grained reconfigurable arrays (CGRAs) ex-
tend a conventional processor with a network of inter-
connected functional units that can be reprogrammed
to carry out any composite function. Typical func-
tional units carry out simple arithmetic and logic op-
erations. [9] gives an overview of many CGRAs.

1.1.1 Instruction Throughput versus Transistor Count

Instruction throughput is a measure of CPU performance:
machine instructions executed per unit time. Throughput is
affected by the choice of CPU, the bandwidth of the mem-
ory bus, and the clock frequency of the system. For all five
classes of architecture, higher throughput costs more tran-
sistors. More logic gates and more memory elements are
required, as higher throughput is achieved using pipelines,
superscalar execution units, and caches. For an overview
of each of these, see [18].

1.1.2 Instruction Throughput versus Predictability

From an RTS perspective, speed versus predictability is an
important tradeoff. Architectures featuring complex CPUs
may be fast, but are difficult to analyze, and thus difficult to
prove safe. This is because of hidden state. A CPU compo-
nent has hidden state if its operation is affected by memory
elements that are not directly accessible. Examples of hid-
den state components include caches and dynamic branch
prediction tables. These components trade predictability for
average execution speed [26].

Through the hidden state, tasks influence the execution
time of other tasks. Even within a single task, interac-
tions between CPU components require complex analysis
( [14, 26] provide examples). These interactions makes it
impossible to decompose analysis tools into modular, ex-
tensible forms [10].

RTS researchers are currently debating the best way to
derive tight and safe estimates for WCETs on platforms
with hidden state. Two basic approaches exist: CPU mod-
eling to ensure safety [10], or measurement followed by
probabilistic modeling [4] to ensure safety within a known
probability bound. Hidden state and predictability are not
necessarily mutually exclusive, but all approaches for de-
termining WCET become simpler and more accurate when
hidden state is reduced.

CGRAs and FGRAs can provide high throughput, but
may also introduce unpredictability in two ways. Firstly, the



system may be unresponsive during reconfiguration, which
defeats analysis approaches that assume that the system is
always available for event handling. Secondly, reconfigu-
ration may take an imprecisely known length of time. In
particular, run-time reconfiguration of FPGA hardware is
neither well documented nor intended to be used in an RTS.

1.1.3 Flexibility versus Resource Efficiency

A flexible architecture is able to adapt to new application
code without any need to rebuild hardware. This permits
a system to scale, growing in functionality and complexity,
which is increasingly important for embedded systems [11].
Flexibility in terms of allowing all or part of the hardware
function to be changed dynamically is also desirable, to
allow custom application speed-up capability or long-term
system maintenance in the field. A higher level of flexibil-
ity has a cost: reconfigurable units are physically larger than
fixed units, and more hardware is dedicated to control func-
tions. Thus, there is a tradeoff between resource efficiency
and flexibility.

Architectures that use software on a general purpose
CPU are moderately flexible, as the software can be
changed. However, they are not necessarily as efficient as
architectures that include custom hardware. Even the sim-
plest CPUs introduce an overhead for fetching, decoding
and executing instructions. ASIPs do not provide any more
flexibility than a general purpose CPU as their hardware is
fixed once defined, although resource efficiency may be im-
proved by the move towards fixed units.

Run-time reconfigurable architectures (FGRAs and
CGRAs) provide a greater degree of flexibility than ASIPs,
as parts of the hardware can be changed dynamically. They
retain the flexibility of CPUs as far as execution of new
software is concerned. Resource efficiency is lost, as there
are more reconfigurable units, but the flexibility and higher
throughput of the device can make up for this.

1.1.4 Summary

Table 1 lists the technologies mentioned in this section, with
an analysis of their throughput, predictability, relative tran-
sistor count and flexibility. An ideal architecture would pro-
vide high throughput and high predictability, with a mini-
mal transistor count. It would also be flexible, meaning that
it could easily be adapted for new tasks. No system cur-
rently meets this ideal.

2 MCGREP

MCGREP (microprogrammed coarse grained reconfig-
urable processor) is both a CPU and a reconfigurable logic
device, sharing a single set of functional units arranged as

Table 1. Summary of architecture types de-
scribed in section 1.1.
Technology T’put Pred. T. Count Flex.
CPU Low High Low Low
CPU + Cache High Low High Low
ASIP High High Low Low
FGRA High Low High High
CGRA High Low High High
Ideal High High Low High

a 1D array. This section examines the design principles of
MCGREP, then describes its architecture and operation.

2.1 Design Principles

Heckmann et. al. [10] gives a list of recommenda-
tions for a CPU that is easy to model for the purposes of
WCET analysis. These include separate instruction and
data caches, cache replacement strategies that always lead
to known states, static branch prediction, in-order execu-
tion, and no shortcuts in the hardware design. These rec-
ommendations lead to a CPU that is predictable, but not as
fast as a CPU optimized for a high average speed (assuming
the same silicon process for manufacture).

The use of application specific hardware can speed up
performance of a CPU by many orders of magnitude [7].
Importantly for a RTS, this may be done while maintaining
predictability. However, the cost is flexibility, as hardware
is being committed to a fixed purpose.

Reconfigurable architectures provide a way to add appli-
cation specific hardware without reducing flexibility [25].
In FGRAs reconfiguration is achieved at a high cost, due
to the complexity of the reconfigurable platform and the
resulting size of the configuration bitstreams. In contrast,
CGRAs have lower reconfiguration costs than FGRAs [24],
due to the reduced size of the required configuration bit-
stream, which is helpful in an RTS that must remain respon-
sive. Some CGRAs, such as PipeRench [20], introduce a
pipeline that allows the CGRA configuration to be changed
every clock cycle.

Summarizing, MCGREP follows Heckmann’s principles
for a predictable CPU, but couples this with the flexibility of
a CGRA. To further increase flexibility, the CGRA is con-
trolled by a microprogram [18].

2.2 Architecture

MCGREP is connected to other components (RAM,
ROM, devices) in a conventional manner (Fig. 1). The
internal architecture of MCGREP is illustrated in Fig. 2.
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Figure 1. Bus connection block diagram for a
MCGREP system.
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Figure 2. Current MCGREP Architecture.

MCGREP is microprogrammed, based on classic micropro-
gramming architectures [18]. In the figure, dotted lines rep-
resent control paths, carrying instructions from the micro-
program store (right of figure) to other devices. The micro-
program store is a fast internal RAM with a very wide data
output. Control paths are connected to one or more bits,
possibly with a simple intermediate decoder to reduce the
RAM required. Fig. 3 gives an example of the relationship
between microcode bits and two internal CPU devices.

MCGREP provides two modes of operation, namely
CPU and application specific. These are discussed in the
following sections.

2.2.1 Conventional CPU Operation

On startup, the operation of MCGREP is controlled by an
initial microprogram that emulates a conventional CPU,
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Control Store Output:

Figure 3. Example of the relationship be-
tween microcode bits and a multiplexer (left)
and a sign extender (center). The bits select
the path taken by the data.
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Figure 4. MCGREP’s two-stage pipeline. Most
opcodes execute in one machine cycle. Table
6 lists exceptions: longer opcodes stall the
pipeline until they complete.

fetching program instructions from external RAM. These
instructions are executed using a two-stage pipeline, illus-
trated in Fig. 4. This shallow pipeline does not require any
hidden state components in order to operate at maximum
efficiency. Instruction decode is part of the fetch cycle.

All MCGREP instructions take a fixed number of clock
cycles to complete and are unaffected by execution history,
making MCGREP a predictable processor. A three-stage
pipeline, involving a separate decoding stage, would have
similar characteristics with a lower overall propagation de-
lay - this is planned for future versions.

2.2.2 Application Specific Operation

In conventional CPU mode, MCGREP may execute any
program compiled with the correct ISA. However, execu-
tion speed is bounded by the speed of the memory, as MC-
GREP has no cache. To obtain maximum throughput, pro-
grams may upload new microprograms into the micropro-
gram store, and then trigger execution using a special in-
struction. Essentially, this permits application specific oper-
ations to be encoded as single instructions. Uniquely, MC-
GREP allows new microprograms to be uploaded dynami-
cally at run-time (unlike ASIPs); from either application or
system software.

MCGREP microprograms can be viewed as sequences
of configurations for a CGRA. The two execution units in
the center of Fig. 2 are time-multiplexed, allowing them to
act as a virtual CGRA (Fig. 5). CGRAs offer useful capa-
bilities for parallel execution at the microinstruction level.
The correct sequence of CGRA configurations can carry out
any function that would normally be executed by machine
code, but in fewer clock cycles. The speedup is achieved by
parallelism, lack of a decoding step, and the high speed of
microcode store access.

Fig. 6 shows a sequence of opcodes for a restricted in-
struction set computing (RISC) processor. These can be
mapped as a sequence of three MCGREP CGRA config-
urations (plus an exit configuration) as shown in Fig. 7.

A program obtains a CGRA mapping through a bespoke
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Figure 5. MCGREP’s execution units, viewed
as a virtual CGRA.

7084: 8c e4 00 00 l.lbz r7,0x0(r4)
7088: 9c a5 ff ff l.addi r5,r5,0xffffffff
708c: d8 06 38 00 l.sb 0x0(r6),r7
7090: 9c 84 00 01 l.addi r4,r4,0x1
7094: bc 25 ff ff l.sfnei r5,0xffffffff
7098: 13 ff ff fb l.bf 7084 <_memcpy+0x1c>
709c: 9c c6 00 01 l.addi r6,r6,0x1

Figure 6. A sequence of conventional op-
codes (from memcpy, which is a hotspot in the
crc32 benchmark program).

compiler that translates conventional opcodes (or explicitly
specified register transfers) into microcode. Microcode is
stored as read-only data in programs, and uploaded either
on initialization or on demand.

There is limited space for configurations within MC-
GREP’s internal memory. However, given that microcode
configurations can be changed dynamically, an OS or task
can multiplex microcode configurations as required. The
finite space limits the number of functions that can be ac-
celerated at any one time, but this is not a problem for many
programs, as it is sufficient to accelerate hotspots - the areas
of code that are most frequently executed. However, MC-
GREP is not limited to hotspots. It may accelerate any area
of code, including worst-case execution paths.

Complete reconfiguration of the MCGREP execution
units takes place every machine cycle, according to the con-
figuration stored in microcode. This allows different speed
up functions to be executed on different clock cycles with-
out affecting the predictability of the processor. These func-
tions can achieve a higher throughput than plain machine
code, as they carry out operations in parallel, fetch coeffi-
cients from reserved areas of the register file, and require no
instruction fetch or decoding step.

2.3 Related Work

Hotspots are prioritized for optimization almost uni-
versally. ASIP tool vendors recommend profiling to find
hotspots [7], caches are effective because they store hotspot
instructions, and just in time (JIT) compilers often target
hotspots first. This is because hotspots have a more signifi-
cant effect on overall throughput than any other part of the

code. For more information about hotspots and the tech-
niques used to detect them, the reader is referred to [16].

Reconfigurable arrays have been combined with earlier
processors. [9] gives an overview. Chimaera [27] is of
particular interest as the reconfigurable array and proces-
sor share a register file, a model which is reused in MC-
GREP in order to achieve tight integration. However, re-
configuration is not instantaneous and requires suspension
of normal execution. PipeRench [20] improves on this us-
ing a time-multiplexing technique, reused by MCGREP, but
the PipeRench array is not tightly integrated into the CPU.
ReRisc [24] tightly integrates a RISC core and a CGRA
with configuration cache, permitting fast reconfiguration in
the case of a cache hit.

Run-time reconfigurable hardware is a young research
field which has not been extensively applied to real-time
systems. Steiger [23] describes an operating system (OS)
for sharing an FPGA between real-time tasks, in which the
FPGA is used as a fine-grained reconfigurable array. A
similar approach is taken by Shang [21]. The techniques
used by this work, which primarily involves the solution of
a 2D scheduling problem, are specific to fine-grained ar-
rays. CGRAs such as MCGREP may reuse software task
scheduling approaches to multiplex configurations.

However, the difficulties posed by CPU hidden state have
been examined extensively. Some research aims to solve the
problem through better WCET analysis techniques [4, 10].
Other work reduces the complexity of the problem. The
VISA approach [1] creates a simple model of a complex
processor to facilitate WCET analysis, and then bounds the
operation of the complex processor to the timing of the sim-
ple model. Cache locking [3] may also be used to ensure
that a real-time task is always kept in cache. This is an ef-
fective approach, but complex analysis is still required for
the parts of the program that are not in cache.

User-programmable microcode has been made available
before, for example by the PDP-11, but the feature was
rarely used, primarily because microcode is highly specific
to a particular internal CPU architecture. There is no layer
of abstraction between hardware and microcode, so preserv-
ing binary compatibility prevents any improvements being
made to the CPU architecture.

This disadvantage is avoided by MCGREP by making
the internal architecture fully open and providing tools to
translate register transfers into microcode. To preserve bi-
nary compatibility, it is proposed that descriptions of mi-
crocode in an abstract form should be stored with compiled
applications so that microcode can be compiled for the cur-
rent processor before execution. Future work on MCGREP
will introduce a “CPU driver” to make this process almost
transparent to the programmer.

MCGREP’s approach bears some similarities to
VLIW [6], which also permits software to direct the
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Figure 7. Mapping of Fig. 6 onto a sequence
of MCGREP configurations.

low-level operations of functional units. The key difference
is in the level of dynamic control of features. MCGREP
allows a program to decide how to use operation storage
and computing resources within the processor, which may
be done according to any criteria required by the designer,
statically or dynamically. In VLIW approaches, decisions
about the use of computing resources must be made at
compile time, and decisions about the use of operation
storage resources are made by the cache hardware.

3 MCGREP Implementation

The implementation of MCGREP has the architecture il-
lustrated in Fig. 2. It is written in VHDL as a softcore: a
hardware definition that can be downloaded onto an FPGA.
It includes two execution units (center of figure) as this is
the minimum number required to demonstrate the princi-
ples of the design: the simplest possible implementation.
Execution is directed entirely by the microcode store (right
side of figure), which is a “block RAM” within the FPGA.

The 32-bit OpenRISC [12] instruction set architecture
(ISA) was adopted for MCGREP’s conventional execu-
tion mode. OpenRISC is a free softcore processor. MC-
GREP offers a reasonable level of compatibility with Open-
RISC, supporting all instructions generated by the Open-
RISC compiler.

Any ISA could be used, but the OpenRISC architec-
ture is stable, freely available, and supported by free soft-
ware tools such as gcc, the glibc library, and both
RTEMS [17] and Linux operating systems. Reuse of this
ISA also permits direct comparison of MCGREP with the
OpenRISC softcore, as both run the same machine code.
An interpreter for OpenRISC instructions is preloaded into
the microcode store, to take care of booting the processor
and running user programs.

MCGREP programs may be built using a conventional
tool flow (C source → Object code → Executable). Pro-
grams built in this way will be compatible with both MC-
GREP and OpenRISC. However, MCGREP programs may
also make use of application specific microcode. For this,

C Source Code

Object Code

Executable Program

Hotspots Extracted

Microcode Definition

binary modifier

gcc (C compiler)

Microcode compiler

ld (linker)

Patched Executable

Profile/Analysis Data

Figure 8. Conventional toolchain with sup-
port for appplication specific microcode.

ac48: b8 86 00 58 l.srli r4,r6,0x18
ac4c: a5 84 00 0f l.andi r12,r4,0xf
ac50: bc 2c 00 00 l.sfnei r12,0x0
ac54: 10 00 00 0b l.bf ac80 <_III_huffdecode+0x844>
ac58: 9f a0 00 01 l.addi r29,r0,0x1
ac5c: 9d 40 00 00 l.addi r10,r0,0x0
ac60: d4 10 50 00 l.sw 0x0(r16),r10
ac64: ba a6 00 54 l.srli r21,r6,0x14
ac68: a5 95 00 0f l.andi r12,r21,0xf
ac6c: bc 2c 00 00 l.sfnei r12,0x0
ac70: 13 ff ff bc l.bf ab60 <_III_huffdecode+0x724>
ac74: 9c a0 00 01 l.addi r5,r0,0x1
ac78: 03 ff ff ce l.j abb0 <_III_huffdecode+0x774>
ac7c: 9e e0 00 00 l.addi r23,r0,0x0
ac80: 84 62 fe fc l.lwz r3,0xfffffefc(r2)
ac84: e0 9d 60 08 l.sll r4,r29,r12
ac88: e3 63 20 03 l.and r27,r3,r4
ac8c: bc 1b 00 00 l.sfeqi r27,0x0
ac90: 10 00 00 0e l.bf acc8 <_III_huffdecode+0x88c>
ac94: b8 ec 00 02 l.slli r7,r12,0x2
ac98: e3 e7 10 00 l.add r31,r7,r2
ac9c: 85 7f ff 24 l.lwz r11,0xffffff24(r31)
aca0: 9e 6e ff ff l.addi r19,r14,0xffffffff
aca4: 9e 20 00 01 l.addi r17,r0,0x1
aca8: e1 f1 98 08 l.sll r15,r17,r19
acac: e1 92 78 03 l.and r12,r18,r15
acb0: bc 0c 00 00 l.sfeqi r12,0x0
acb4: 10 00 00 03 l.bf acc0 <_III_huffdecode+0x884>
acb8: a9 d3 00 00 l.ori r14,r19,0x0
acbc: e1 60 58 02 l.sub r11,r0,r11
acc0: 03 ff ff e9 l.j ac64 <_III_huffdecode+0x828>
acc4: d4 10 58 00 l.sw 0x0(r16),r11

Figure 9. A hotspot from mad, in OpenRISC
machine code form.

a different tool flow is used (Fig. 8). New steps include
identification of candidate code areas for microcode imple-
mentation (this may be done by profiling or analysis), mi-
crocode generation, and binary modification. The binary
modification step replaces existing machine code with a call
to equivalent (but faster) microcode.

3.1 Microcode Generation

Figures 9 through 11 illustrate the microcode generation
process as applied to mad, the MPEG audio decoder [13].
This begins with the OpenRISC machine code shown in
Fig. 9, which was identified by profiling as one of several
hotspots in mad. This machine code is translated into a reg-
ister transfer form automatically. The register transfer form
describes the operation in an abstract notation that is inde-
pendent of the hardware. For example, D ← A op B means
that the result of the operation op on the data from registers
A and B is stored in D.



00: r4 ← r6 shr 0x18
01: r12← r4∧ 0xf
02: flag← r12 �= 0
03: r29← 1, if flag { branch to state 10 }
04: r10← 0, [r16]← r10
05: r21← r6 shr 0x14, r12← r21∧ 0xf
06: flag← r12 �= 0, r5 ← 1
07: if flag { PC← PC + 0xab60 - 0xac48, return to program }
08: PC← PC + 0xabb0 - 0xac48, return to program
09: r23← 0
10: r3 ← [r2−0x104], r4← r29 shl r12
11: flag← r27 = 0, r27← r3 ∧ r4
12: r7 ← r12 shl 2, if flag { branch to state 20 }
13: r31← r7 + r2, r19← r14− 1
14: r11← [r31−0xdc], r17← 1
15: r15← r17 shl r19, r12← r18 ∧ r15
16: flag← r12 = 0, r14← r19
17: if flag { PC← PC + 0xacc0 - 0xac48, return to program }
18: r11← 0 − r11,
19: [r16]← r11, branch to state 5
20: PC← PC + 0xacc8 - 0xac48, return to program

Figure 10. Optimized microprogram se-
quence for Fig. 9, expressed as register
transfers. The sequence has been simplified
slightly: load and store actually require sev-
eral microinstructions. Branches that leave
microcode are relative to the entry point mak-
ing the microcode position independent.

static const unsigned microcode [] = {
0x382424fa , 0x4a1020e0 , 0x803 ,
0x78180dfa , 0xC5C42434L , 0x804 ,
0x7a1300f7 , 0xa009090 , 0x60a ,
0x391324fa , 0x4409090 , 0x80a ,
0x382424fa , 0xa04b820 , 0x802 ,
... } ;

Figure 11. Microcode commands embedded
in C source.

After this, the register transfers are converted into an op-
timized sequence in which operations are parallelised when-
ever possible (Fig. 10). Currently, the optimization process
is done by hand, but techniques for automatic optimization
of register transfers are well-known and will be introduced
in subsequent versions of the tool.

Finally, the optimized register transfers are automatically
compiled into microcode. A C source file containing a ta-
ble of microcode commands is generated, ready for upload-
ing into the microcode store (Fig. 11). On bootup, the mi-
crocode store is preloaded with an initial configuration for
conventional execution: new commands have to be loaded
in the area of memory that is not used by this.

The microcode store is memory-mapped, so uploading
involves writing the commands to a series of special ad-
dresses in memory. MCGREP includes a driver procedure,
written in C, which will take a table like the one shown in
Fig. 11 and upload it into the processor. No checking is
performed on the commands.

The compiler supports both static configurations (which
are fixed at program initialization) and dynamic configu-
rations (in which the microcode is changed in response to
program execution). It also acts as the core generator for
the MCGREP core itself (implemented in VHDL).

Table 2. Sizes and maximum speeds of some
32-bit softcores on Virtex-II.

Soft-core Size RAM Speed
(LUTs) (kb) (MHz)

OR1200 5286 0 46.9
MCGREP 2591 28 44.3
Microblaze 1149 0 110.9

4 Evaluation

In this section, the tradeoffs made by MCGREP are eval-
uated. The experimental platform is a Xilinx Virtex-II 2000
FPGA (speed grade 4) with 512Kb of SRAM, in which MC-
GREP is supported by a boot ROM, I/O devices, and a va-
riety of hardware timers that are used for measurements.
Some experimental evaluations use benchmark programs
taken from the MIBench [8] and Mediabench [13] suites.

Comparisons can be made between MCGREP and other
softcore processors. A direct comparison is possible with
the OpenRISC OR1200 [12], as MCGREP implements the
subset of the OR1200 ISA used by the C compiler (gcc).
The Microblaze [2] softcore is also compared, as it is a
popular architecture for embedded systems built on Xilinx
FPGA platforms.

4.1 Instruction Throughput versus Tran-
sistor Count

Transistor count represents the amount of physical hard-
ware required by a device. As the target platform for MC-
GREP is an FPGA, the number of look-up tables (LUTs) are
used in place of a transistor count, as LUTs are the small-
est general-purpose unit on an FPGA. Table 2 compares
the size and maximum frequency of three softcores imple-
mented on a Virtex-II 2000. All cores were configured with
near-identical features where possible (no cache, no FPU,
no MMU, and multiplier), and synthesized using identical
settings. The latest CVS version of OpenRISC OR1200 was
used, along with Microblaze version 3. All cores use iden-
tical peripherals via Wishbone on-chip buses. The amount
of RAM used by MCGREP is dependent upon the amount
of microcode store required. The range is currently from
4.5kb to 28kb.

Table 3 shows the instruction throughput of some bench-
marks on each processor, when running in a predictable (i.e.
cacheless) configuration. Each throughput value is calcu-
lated by dividing the total number of instructions executed
for the benchmark by the execution time of the benchmark.
Variations are caused by a different mix of instructions in
each benchmark.



Table 3. Instruction throughputs of bench-
marks on three processors with 40MHz clock
and single-cycle memory latency (millions of
instructions per second).
B’mark O’RISC M’blaze MCGREP MCGREP

mc only mc+µc
aes 9.99 10.49 7.09 11.09
crc32 11.43 11.42 8.89 21.78
dijkstra 14.57 11.18 12.06 18.52
g721 15.20 11.91 13.04 17.04
jpeg 10.26 9.88 8.09 11.56
mad 17.81 9.89 13.56 19.99
qsort 8.46 11.07 8.87 11.68
sha 14.51 11.38 11.95 26.42

Table 4. Number of instructions executed for
each benchmark.

Benchmark OR/MCGREP Microblaze
instructions instructions

aes 1.91× 106 1.86× 106

crc32 3.94× 106 3.94× 106

dijkstra 2.81× 108 1.73× 108

g721 3.37× 108 2.78× 108

jpeg 7.36× 106 5.53× 106

mad 5.58× 107 3.34× 107

qsort 5.01× 106 5.18× 106

sha 7.01× 107 5.50× 107

For reference, Table 4 shows the number of instructions
executed by each benchmark, when compiled for Open-
RISC/MCGREP and Microblaze. Data sets are identical -
ISA and compiler differences account for the variable nu-
merical relationship of the instruction counts. These results
show that the Microblaze compiler is slightly more efficient
than the OpenRISC compiler in some cases, with the same
program requiring fewer instructions.

Table 3 shows two sets of results for MCGREP - one
when using plain machine code only, and another using a
combination of machine code and microcode. The effect
of the microcode is identical to the effect of the original
machine code, so the total number of instructions executed
is considered to be the same.

Table 3 indicates that MCGREP’s performance is
slightly poorer than OpenRISC and Microblaze when ex-
ecuting machine code (“mc”) only. When application spe-
cific microcode is in use (“mc+µc”), MCGREP’s overall
performance exceeds that of both OpenRISC and Microb-
laze in all of the cases tested here. Thus, MCGREP com-
pares well with OpenRISC and Microblaze: it requires less
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Figure 12. The effects of interference on
throughput of the crc32 benchmark, on the
OpenRISC and MCGREP processors. Open-
RISC results were obtained with and without
caching.

general-purpose hardware than OpenRISC, and only around
twice that required by Microblaze.

4.2 Instruction Throughput versus Pre-
dictability

An RTS designer is interested in proving timing correct-
ness. MCGREP attempts to facilitate CPU modeling [10]
and measurement [4] approaches to WCET analysis by op-
erating in a simple and highly predictable fashion.

The execution time of a task T should be independent
of the operation of all other tasks on the system. However,
other tasks may affect the execution time of T through the
CPU cache and other hidden state elements. In particular,
higher priority tasks and interrupt handlers may preempt T
at any time, causing hidden state information (e.g. cached
instructions) to be lost. This reduces the throughput of T -
the portion of the total throughput of the system that is spe-
cific to the execution of T . This effect is shown in Fig. 12.

The hidden state in a cache has no effect unless memory
latency is significant, so the test system used to generate the
following results has a memory latency of 25 CPU clock
cycles. This simulates a typical ratio between memory and
CPU speed. Due to the limitations of the FPGA platform,
the frequency of each CPU is 40MHz, but the results are
equally applicable at any higher frequency.

Interference is generated by a sporadic interference task
that runs with a time interval in the range [t, 2t]. The min-
imum value of t was set to 2000 clock cycles (50µs at
40MHz) - simulating a fast interrupt. The interference task
is a short routine that invalidates the instruction cache.

Table 5 shows the effects of interference on various
benchmark tasks running on MCGREP, OpenRISC, and
Microblaze, with minimum and maximum throughputs.
OpenRISC and Microblaze make use of 4kb instruction
caches (more than enough to contain the hotspots from each



Table 6. Instruction timings on MCGREP.
Instruction class Example Clock cycles
ALU l.add max(2, m)
Shift l.sll max(2, m)
Shift Imm. l.slli max(4, m)
Multiply l.muli max(2, m)
Load l.lwz 4 + 2 × max(2, m)
Store l.sw 2 + 2 × max(2, m)
Branch l.bnf max(2, m)
Special l.mfspr max(4, m)
Set Flag l.sfeqi max(2, m)
Move High l.movhi max(2, m)

benchmark). The throughputs are measured during execu-
tion of the benchmark task only: scheduler overheads and
the interference task are not counted.

Table 5 shows large variations in execution times for the
processors with caches. For example, when the aes bench-
mark executes on OpenRISC, the worst case throughput is
1.06, and the best case throughput is 3.63. Thus, the WCET
of an aes task could vary by a factor of nearly 3.5 times.
On MCGREP, the aes throughput varies by (at most) a fac-
tor of 1.03 (due to a small inaccuracy introduced by soft-
ware control of a counter). The processors with caches do
achieve higher peak throughput than this version of MC-
GREP, but MCGREP can achieve the same level of through-
put under any amount of interference.

4.3 Timing Analysis

To demonstrate MCGREP’s support for easy timing
analysis, Table 6 gives the number of clock cycles required
by a number of operations. In this table, m is the memory
latency in clock cycles. Instruction fetch also requires m
clock cycles, but fetch is carried out in parallel to execution
(see Fig. 4), so m is a minimum bound on each timing, not
an additional cost. Using Table 6, a static analysis tool can
derive exact timings for sections of MCGREP code. Ap-
plication specific microcode timings are found by using the
rule that each microcode state requires 2 clock cycles per
execution, plus memory latency for loads and stores.

The hotspot shown in Fig. 9 can be analyzed for WCET
using these rules. The hotspot is broken down into basic
blocks (Fig. 13): the time taken for each is computed (Ta-
ble 7), and the longest possible path through the execution
graph gives the WCET. The longest path (1, 5, 6, 7, 8, 3,
4) requires 82 clock cycles when the hotspot is executed as
machine code (assuming m = 0), and 46 clock cycles when
executed as microcode as shown in Fig. 10.
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Figure 13. Execution graph for the basic
blocks in the hotspot from Fig. 9.

Table 7. Execution times for the basic blocks
in the hotspot from Fig. 9. Times are given in
clock cycles with the assumption that m = 0.

Basic Address µcode mc µc
block range states ET ET

1 [ac48,ac58] [0,3] 12 8
2 [ac5c,ac60] 4 8 6
3 [ac64,ac74] [5,7] 12 6
4 [ac78,ac7c] 8 4 2
5 [ac80,ac94] [9,11] 20 12
6 [ac98,acb8] [12,17] 24 10
7 acbc 18 2 2
8 [acc0,acc4] 19 8 6

4.4 Flexibility versus Resource Efficiency

Table 2 showed that MCGREP is around half the size of
OpenRISC when configured with similar features. This is
because of the heavy use of FPGA RAM resources, which
are used in place of general purpose FPGA fabric. There-
fore, MCGREP makes more efficient use of the general pur-
pose FPGA area, at the cost of RAM. However, this choice
enables dynamic reconfiguration, bringing high flexibility.

MCGREP is a more flexible platform than OR1200 and
Microblaze, as it includes a user-programmable reconfig-
urable logic device (CGRA) in addition to its capability for
executing software. The CGRA may be programmed on a
per-application, per-task, or per-function basis according to
user requirements. There is no limit to the number of con-
figurations that may be stored in memory. Loading time is
predictable and constant for any particular configuration.

5 Using MCGREP Flexibility for RTS Run-
time Support

In MCGREP, application specific microcode can replace
any sequence of machine instructions. The most obvious
use of this feature is accelerating applications. However, it



Table 5. Minimum and maximum throughput for various benchmarks on three processors, at 40MHz,
with 25 cycle memory latency. Caches are invalidates every 50µs (for minimum) or never (for maxi-
mum). Values are millions of instructions per second.

Benchmark OpenRISC Microblaze MCGREP MCGREP
mc only mc+µc

aes [1.06, 3.63] [1.31, 4.41] [1.00, 1.03] [2.88, 2.91]
crc32 [4.86, 7.15] [5.66, 7.05] [1.15, 1.19] [6.63, 6.63]

dijkstra [3.74, 8.84] [4.13, 6.22] [1.57, 1.61] [4.26, 4.38]
g721 [1.59, 3.92] [2.71, 4.63] [1.20, 1.24] [1.99, 2.04]
mad [1.52, 3.71] [1.59, 3.10] [1.33, 1.37] [2.27, 2.31]

qsort [1.58, 6.33] [2.89, 7.31] [1.13, 1.27] [1.69, 1.77]
sha [3.45, 6.74] [4.53, 7.48] [1.15, 1.18] [4.71, 4.78]

may also assist an RTS in a number of other ways, described
in the following section.

5.1 Accelerating System Code

MCGREP permits frequently active operating system
features, such as context switchers, schedulers and inter-
rupt handlers, to be partially moved into microcode. Even
microcode loaders can be resident in microcode. The use
of microcode within the operating system would reduce the
system overhead, increasing the response time of applica-
tion tasks. Fig. 7 is an example of system code (memcpy,
from the C library) translated into an optimal micropro-
gram. Any function calling memcpy will benefit from the
increased speed.

5.2 Smart Interrupt Handling

A typical CPU forces interrupt handling code to run at
a higher priority than all other code, with the exception of
code that executes while interrupts are disabled. An RTS
may include many tasks at different priority levels, but even
the highest priority task can still be preempted by a sig-
nal for a low priority task. This results in a part of of the
low priority task (the interrupt service routine or ISR) get-
ting exclusive control of the system while the interrupt is
handled. The conventional solution to this problem is to in-
troduce two-level interrupts in which the ISR is as short as
possible, but generates an event that causes the low priority
task to be scheduled once higher priority tasks complete.

In MCGREP, the first part of this two-level interrupt
scheme can be implemented directly in microcode, which
eliminates any need to save registers, context switch, or
fetch instructions from memory. MCGREP interrupts are
handled during instruction decode: when an interrupt is
pending, the instruction decoder will reroute microprogram
execution to a handler routine. The present version of MC-

00: IN ← [0x80000000]
01: IP ← [IN + T D1]
02: flag← IP > T P
03: if flag { branch to state 8 }
04: X ← [IN + T D2]
05: X ← X + 1
06: [IN + T D2]← X
07: return to program
08: trigger software ISR (PC← ISR)

Figure 14. Microcoded ISR for a two-level in-
terrupt scheme. As in Fig. 10, load/store op-
erations have been simplified for clarity.

GREP uses this feature to emulate OpenRISC-style inter-
rupt handling. However, this behavior may be extended.

Fig. 14 shows an alternative microcoded ISR. This
ISR acknowledges an interrupt (by reading the interrupt
number IN from a memory mapped device at address
0x80000000). It then obtains the priority for the interrupt
IP , by loading entry IN from a priority table in memory
starting at TD1. This interrupt priority is compared to the
current task priority TP , stored by the OS during the last
context switch. If IP ≤ TP , the interrupt is marked pend-
ing by incrementing a counter in a pending table (starting at
TD2). The ISR will be invoked by the scheduler at a later
stage. However, if IP > TP , the interrupt service routine
is invoked immediately.

With this scheme, each interrupt has a (dynamic) prior-
ity, and immediate interruption is only permitted if this pri-
ority exceeds the priority of the current task.

As earlier descriptions of microcode have indicated,
there is no limit on the complexity of the commands that
could be executed by an ISR. MCGREP is flexible enough
to support any OS signaling protocol and may adapt to new
protocols without any need to change the hardware.

5.3 Test and Set

An atomic operation cannot be split or interrupted. It is
guaranteed to complete. Atomic operations are commonly



00: X ← [rA]
01: flag← X �= 0, [rA]← rB
02: return to program

Figure 15. Microcoded test-and-set instruc-
tion. The value at rA is loaded and copied
into the flag register, then rB is stored at rA.
These operations are indivisible.

used to implement protected objects and monitors - high
level objects in which mutually exclusive access is guaran-
teed. CPUs often support mutual exclusion using a “test
and set” instruction [22], which will read and update a con-
trol flag atomically. This is used as the core of a software
function to manage mutual exclusion (such as pthread -
mutex lock from POSIX threads).

In MCGREP, microcode execution is always atomic, so
microcode is a suitable platform for implementing mutual
exclusion functions. Interrupts are only handled during in-
struction decoding, which takes place only during a “return
to program” microcode operation. The main benefit of mi-
crocoding mutual exclusion operations is execution speed,
as no extra steps need to be taken to make the operations
atomic. Flexibility is still assured as microcode operations
can be changed as easily as software. Fig. 15 gives an ex-
ample of a test-and-set instruction for MCGREP.

5.4 Priority Inheritance

It is possible to implement more sophisticated types of
mutual exclusion than test and set in hardware, but this is
rarely done because such schemes are inflexible and may
result in hardware that an OS will not be able to use due
to incompatibility with its own architecture. However, MC-
GREP provides a way to implement complex mutual exclu-
sion schemes at the microcode level, which can be easily
changed to match OS and application requirements.

For example, semaphore locking is commonly used to
protect access to a critical section, and some critical sections
are shared between tasks of different priority. In these cases,
priority inversion may occur (Fig. 16(a)). In this figure,
inversion occurs because low-priority task L locks a critical
section at point A, but access to the section is later required
by high-priority task H at point B. As task M has priority
over L, H is blocked by M as it waits for L to complete.
Priority inheritance avoids this by giving L the priority of
H at point C (Fig. 16(b)).

MCGREP’s microcode may be used to implement a pri-
ority ceiling protocol with minimal context switching. This
priority inheritance scheme prevents priority inversion. The
immediate priority ceiling protocol [5] (ICPP) is used.

Critical section entry is handled by the microcode in Fig.
17, and exit is handled by Fig. 18. If the CPU flag is set
on return from the exit microcode, the scheduler should be
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Figure 16. A priority inversion problem, (a), is
solved using priority inheritance, (b). Critical
sections are marked in black.

Microcode: Pseudocode:

00: flag← CP ≥ T P
01: if not flag, { return to program }
02: CP S ← CP S + 4, T P ← CP
03: [CP S]← CP
04: [P V ]← CP
05: return to program

if ( CP ≥ T P )
then

– Priority is updated. Push:
CP S := CP S + 4 ;
[CP S] := CP ;
– Update stored priority
T P := CP ;
[P V ] := CP ;

end if ;

Figure 17. Critical section entry.

invoked by a “yield” operation as task priorities have been
updated. For these examples, the current task is known as
T and the critical section is known as C. The registers that
are used are listed in Table 8.

5.5 Instant Context Switching

MCGREP’s architecture also provides many more regis-
ters than are required by RISC code. These registers are cur-
rently used to store temporary data and constants (e.g. the
microcode in Fig. 10 uses about 15 immediate values which
are stored as constants in the register file). They may also be
used for fast context switching, by partitioning the register
file and swapping to another partition on task switch. This
technique is fast, but inflexible as the maximum number of
possible partitions is fixed.

6 Conclusions

This paper has described MCGREP, a processor ar-
chitecture combining coarse-grained dynamically reconfig-

Microcode: Pseudocode:

00: flag← T P = CP
01: if not flag, { return to program }
02: CP S ← CP S − 4
03: X ← [CP S]
04: flag← X �= T P
05: if not flag, { return to program }
06: T P ← X , [P V ]← X
07: return to program

if ( T P = CP )
then

– Pop
CP S := CP S − 4 ;
X := [CP S] ;
if ( X �= T P )
then

T P := X ;
[P V ] := X ;
– Program should call yield ()

end if ;
end if ;

Figure 18. Critical section exit.



Table 8. Key to register names used in Fig-
ures 17 and 18.

Register Description
OTP Static task priority for T .
TP Dynamic task priority for T .
CP Static ceiling priority for C.

CPS Pointer to top of stack containing
the ceiling priorities of critical sec-
tions that are locked. Initially con-
tains OTP . Stack memory is local
to T .

PV Pointer to the global variable that
stores the priority of T . This is read
by the scheduler.

X Temporary store.

urable logic with conventional processing features. Real-
time systems design presents many architectural choices,
and MCGREP adds a new option: a predictable processor
that achieves speed through support for application specific
microprograms which direct the operation of the reconfig-
urable logic.

MCGREP has been implemented on an FPGA, and com-
pares well to existing softcores. Some of the uses for MC-
GREP in real-time applications have been demonstrated by
experiment. In particular, MCGREP tasks are unaffected by
the operations of higher-priority tasks, as MCGREP lacks
any hidden state features (such as caches).
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